Вырожденность генетического кода: общие сведения

Генетический код, выраженный в кодонах, это система кодирования информации о строении белков, присущая всем живым организмам планеты. Его расшифровка заняла десятилетие, а вот то, что он существует, наука понимала почти столетие. Универсальность, специфичность, однонаправленность, а особенно вырожденность генетического кода имеют важное биологическое значение.

вырожденность генетического кода

История открытий

Проблема кодирования генетической информации всегда была ключевой в биологии. К матричному строению генетического кода наука продвигалась довольно неспешно. С момента обнаружения Дж. Уотсоном и Ф. Криком в 1953 году двойной спиральной структуры ДНК начался этап разгадывания самой структуры кода, который побудил веру в величие природы. Линейная структура белков и такая же структура ДНК подразумевала наличие генетического кода как соответствия двух текстов, но записанных при помощи разных алфавитов. И если алфавит белков был известен, то знаки ДНК стали предметом изучения биологов, физиков и математиков.

Нет смысла описывать все шаги в решении этой загадки. Прямой эксперимент, доказавший и подтвердивший, что между кодонами ДНК и аминокислотами белка существует четкая и последовательная соответственность, провели в 1964 году Ч. Яновски и С. Бреннер. А далее – период расшифровки генетического кода in vitro (в пробирке) с использованием техник синтеза белка в бесклеточных структурах.

Полностью расшифрованный код E. Coli был обнародован в 1966 году на симпозиуме биологов в Колд-Спринг-Харборе (США). Тогда и открылась избыточность (вырожденность) генетического кода. Что это значит, объяснилось довольно просто.

вырожденность генетического кода проявляется в том что

Раскодирование продолжается

Получение данных о расшифровке наследственного кода стало одним из самых значительных событий прошлого столетия. Сегодня наука продолжает углубленно исследовать механизмы молекулярных кодировок и его системных особенностей и переизбытка знаков, в чем выражается свойство вырожденности генетического кода. Отдельная отрасль изучения – возникновение и эволюционирование системы кодирования наследственного материала. Доказательства связи полинуклеотидов (ДНК) и полипептидов (белки) дали толчок развитию молекулярной биологии. А та, в свою очередь, биотехнологиям, биоинженерии, открытиям в селекции и растениеводстве.

Догмы и правила

Главная догма молекулярной биологии – информация передается с ДНК на информационную РНК, а после с нее на белок. В обратном направлении передача возможна с РНК на ДНК и с РНК на другую РНК.

Но матрицей или основой всегда остается ДНК. И все остальные фундаментальные особенности передачи информации - это отражение этого матричного характера передачи. А именно передачи путем осуществления синтеза на матрице других молекул, которые и станут структурой воспроизводства наследственной информации.

вырожденность генетического кода заключается в том что

Генетический код

Линейное кодирование структуры белковых молекул осуществляется с помощью комплементарных кодонов (триплетов) нуклеотидов, которых всего 4 (адеин, гуанин, цитозин, тимин (урацил)), что спонтанно приводит к образованию другой цепочки нуклеотидов. Одинаковое число и химическая комплиментарность нуклеотидов – это главное условие такого синтеза. Но при образовании белковой молекулы качества соответствия количества и качества мономеров нет (ДНК нуклеотиды – аминокислоты белка). Это и есть природный наследственный код – система записи в последовательности нуклеотидов (кодонах) последовательности аминокислот в белке.

Генетический код обладает несколькими свойствами:

  • Триплетность.
  • Однозначность.
  • Направленность.
  • Неперекрываемость.
  • Избыточность (вырожденность) генетического кода.
  • Универсальность.

Приведем краткую характеристику, концентрируя внимание на биологическом значении.

вырожденность генетического кода что это значит

Триплетность, непрерывность и наличие стоп-сигналов

Каждой из 61 аминокислоты соответствует один смысловой триплет (тройка) нуклеотидов. Три триплета не несут информацию об аминокислоте и являются стоп-кодонами. Каждый нуклеотид в цепочке входит в состав триплета, а не существует сам по себе. В конце и в начале цепочки нуклеотидов, отвечающих за один белок, находятся стоп-кодоны. Они запускают или останавливают трансляцию (синтез белковой молекулы).

Специфичность, неперекрываемость и однонаправленность

Каждый кодон (триплет) кодирует только одну аминокислоту. Каждый триплет не зависит от соседнего и не перекрывается. Один нуклеотид может входить только в один триплет в цепочке. Синтез белка идет всегда только в одном направлении, что регулируют стоп-кодоны.

Избыточности генетического кода

Каждый триплет нуклеотидов кодирует одну аминокислоту. Всего 64 нуклеотида, из них 61 – кодируют аминокислоты (смысловые кодоны), а три – бессмысленные, то есть аминокислоту не кодируют (стоп-кодоны). Избыточность (вырожденность) генетического кода заключается в том, что в каждом триплете могут быть произведены замены – радикальные (приводят к замене аминокислоты) и консервативные (не меняют класс аминокислоты). Легко посчитать, что если в триплете можно провести 9 замен (1, 2 и 3 позиция), каждый нуклеотид можно заменить на 4 - 1 = 3 других варианта, то общее количество возможных вариантов замен нуклеотида будет 61 по 9 = 549.

Вырожденность генетического кода проявляется в том, что 549 вариантов - это намного больше, чем необходимо для закодировки информации о 21 аминокислоте. При этом из 549 вариантов 23 замены приведут к образованию стоп-кодонов, 134 + 230 замены – консервативны, и 162 замены – радикальны.

в чем выражается свойство вырожденности генетического кода

Правило вырожденности и исключения

Если два кодона имеют два одинаковых первых нуклеотида, а оставшиеся представлены нуклеотидами одного класса (пуриновые или пиримидиновые), то они несут информацию об одной и той же аминокислоте. Это и есть правило вырожденности или избыточности генетического кода. Два исключения – АУА и УГА – первый кодирует метионин, хотя должен был бы изолейцин, а второй – стоп-кодон, хотя должен был бы кодировать триптофан.

Значение вырожденности и универсальности

Именно эти два свойства генетического кода имеют наибольшее биологическое значение. Все свойства, перечисленные выше, характерны для наследственной информации всех форм живых организмов на нашей планете.

вырожденность генетического кода

Вырожденность генетического кода имеет приспособительное значение, как многократное дублирование кода одной аминокислоты. Кроме того, это означает снижение значимости (вырождение) третьего нуклеотида в кодоне. Такой вариант сводит к минимуму мутационные повреждения в ДНК, которые повлекут за собой грубые нарушения в структуре белка. Это защитный механизм живых организмов планеты.

Статья закончилась. Вопросы остались?
Комментариев 2
Подписаться
Я хочу получать
Правила публикации
0
Вырожденность генетического кода – это
а) кодирование одним триплетом только одной аминокислоты
б) кодирование одним триплетом одной либо нескольких аминокислот
в) кодирование одной аминокислоты несколькими триплетами
г) кодирование одним триплетом разных аминокислот
?
Копировать ссылку
1
Спасибо за статью. Хотелось бы ее продолжения с приведением примера как влияет вырождение генетического кода на человека. К чему он приводит к каким нарушениям? Так когда приводится пример влияния на организм человека вырождености кода генетического легче понять смысл такой запланированной природой или Творцом неизменности генетического кода. Это поможет наглядно определить нарушителя и наказать его, что бы восстановить, правильность течения кодирования. Если я не права поправьте меня.
Копировать ссылку
Редактирование комментария возможно в течении пяти минут после его создания, либо до момента появления ответа на данный комментарий.