Аэродинамика - это... Основы и особенности аэродинамики

Аэродинамика – это область знания, изучающая движения потоков воздуха и их воздействия на твердые тела. Является подразделом гидро- и газодинамики. Исследования в этой области восходят к глубокой древности, ко времени изобретения стрел и планирующих копий, позволявших дальше и точнее посылать снаряд в цель. Однако потенциал аэродинамики полностью был раскрыт с изобретением аппаратов тяжелее воздуха, способных летать либо планировать на значительные расстояния.

аэродинамика это

С древних времен

Открытие законов аэродинамики в 20 веке способствовало фантастическому скачку во многих областях науки и техники, особенно в транспортной сфере. На ее достижениях созданы современные летательные аппараты, позволившие сделать общедоступным фактически любой уголок планеты Земля.

Первые упоминания о попытке покорения неба встречаются в греческом мифе об Икаре и Дедале. Отец с сыном соорудили крылья, похожие на птичьи. Это указывает на то, что еще тысячелетия назад люди задумывались о возможности оторваться от земли.

Очередной всплеск интереса к сооружению летательных аппаратов возник в эпоху Возрождения. Страстный исследователь Леонардо да Винчи много времени посвятил этой проблеме. Известны его записи, в которых объяснены принципы работы простейшего вертолета.

основы аэродинамики

Новая эпоха

Глобальный прорыв в науке (и аэронавтике в частности) совершил Исаак Ньютон. Ведь в основе аэродинамики лежит всеобъемлющая наука механика, родоначальником которой стал английский ученый. Ньютон первым рассмотрел воздушную среду как конгломерат частиц, которые, набегая на препятствие, либо прилипают к нему, либо упруго отражаются. В 1726 году он представил публике теорию сопротивления воздуха.

Впоследствии выяснилось, что среда действительно состоит из мельчайших частиц – молекул. Отражающую способность воздуха рассчитывать научились достаточно точно, а эффект «прилипания» считали несостоятельным предположением.

Удивительно, но данная теория нашла практическое применение спустя столетия. В 60-х, на заре космической эры, советские конструкторы столкнулись с проблемой расчета аэродинамического сопротивления спускаемых аппаратов «затупленной» сферической формы, при приземлении развивающих гиперзвуковые скорости. Из-за отсутствия мощных ЭВМ вычислить данный показатель было проблематично. Неожиданно выяснилось, что достаточно точно рассчитать величину сопротивления и даже распределение давления по лобовой части можно по простой формуле Ньютона, касающейся эффекта «прилипания» частиц к летящему объекту.

Развитие аэродинамики

Основатель гидродинамики Даниэль Бернулли описал в 1738 году фундаментальную взаимосвязь между давлением, плотностью и скоростью для несжимаемого потока, известную сегодня как принцип Бернулли, который также применителен к расчетам силы аэродинамического подъема. В 1799 году сэр Джордж Кэли стал первым человеком, который идентифицировал четыре аэродинамических силы полета (вес, подъемную силу, сопротивление и тягу), а также отношения между ними.

В 1871 году Фрэнсис Герберт Уэнам создал первую аэродинамическую трубу, позволяющую точно измерять аэродинамические силы. Неоценимые научные теории разработаны Жаном Ле Рондом Даламбером, Густавом Кирхгофом, лордом Рэлеем. В 1889 году Чарльз Ренард, французский инженер по аэронавтике, стал первым человеком, который научно рассчитал мощность, необходимую для устойчивого полета.

аэродинамика в действии

От теории к практике

В 19 веке изобретатели взглянули на крыло с научной точки зрения. И благодаря исследованиям механизма полета птиц была изучена аэродинамика в действии, которую позже применили к искусственным летательным аппаратам.

Особо в исследованиях механики крыла преуспел Отто Лилиенталь. Немецким авиаконструктором создано и испытано 11 типов планеров, в том числе биплан. Им же совершен первый полет на аппарате тяжелее воздуха. За относительно недолгую жизнь (46 лет) он совершил порядка 2000 полетов, постоянно совершенствуя конструкцию, которая скорее напоминала дельтаплан, чем самолет. Он погиб во время очередного полета 10 августа 1896 года, став и первопроходцем аэронавтики, и первой жертвой авиакатастрофы. Кстати, один из планеров немецкий изобретатель лично передал пионеру в изучении аэродинамики самолетов Жуковскому Николаю Егоровичу.

Жуковский не просто экспериментировал с конструкциями самолетов. В отличие от многих энтузиастов того времени, прежде всего он рассматривал поведение воздушных потоков с научной точки зрения. В 1904 году он основал первый в мире аэродинамический институт в Качино под Москвой. С 1918 года возглавлял ЦАГИ (Центральный аэрогидродинамический институт).

закон аэродинамики

Первые самолеты

Аэродинамика – это наука, позволившая человеку покорить небо. Без ее изучения было бы невозможно строить летательные аппараты, стабильно перемещающиеся в воздушных потоках. Первый самолет в привычном нам понимании изготовили и подняли в воздух 7 декабря 1903 года братья Райт. Однако этому событию предшествовала тщательная теоретическая работа. Американцы много времени посвятили отладке конструкции планера в аэродинамической трубе собственной разработки.

Во время первых полетов Фредерик В. Ланчестер, Мартин Вильгельм Кутта и Николай Жуковский выдвинули теории, которые объясняли циркуляцию воздушных потоков, создающих подъемную силу. Кутта и Жуковский продолжили разработку двумерной теории крыла. Людвигу Прандтлу приписывают развитие математической теории тонких аэродинамических и подъемных сил, а также работу с пограничными слоями.

Проблемы и решения

Важность аэродинамики самолетов возрастала по мере увеличения их скоростей. Конструкторы начали сталкиваться с проблемами, связанными со сжатием воздуха со скоростью, близкой или большей, чем скорость звука. Различия в потоках при таких условиях привели к проблемам управления воздушным судном, увеличению сопротивления из-за ударных волн и угрозе разрушения конструкции из-за аэроупругого флаттера. Отношение скорости потока к скорости звука было названо числом Маха по имени Эрнста Маха, который одним из первых исследовал свойства сверхзвукового потока.

Уильям Джон Маккуорн Ренкин и Пьер Анри Гугониот независимо друг от друга разработали теорию свойств течения воздуха до и после ударной волны, в то время как Якоб Акерет провел начальную работу по вычислению подъема и сопротивления сверхзвуковых аэродинамических поверхностей. Теодор фон Карман и Хью Латимер Драйден ввели термин «околозвуковой» для описания скоростей на границе 1 Маха (965-1236 км/час), когда сопротивление быстро растет. Впервые звуковой барьер был преодолен в 1947 году на самолете Bell X-1.

аэродинамика самолета

Основные характеристики

Согласно законам аэродинамики, для обеспечения полета в атмосфере земли любого аппарата важно знать:

  • Аэродинамическое сопротивление (ось X), оказываемое потоками воздуха на объект. Исходя из этого параметра подбирается мощность силовой установки.
  • Подъемную силу (ось Y), обеспечивающую набор высоты и позволяющую аппарату лететь горизонтально к поверхности земли.
  • Моменты аэродинамических сил по трем осям координат, действующих на летящий объект. Наиболее важным является момент боковой силы по оси Z (Mz), направленной поперек самолета (условно вдоль линии крыла). Он определяет степень продольной устойчивости (будет ли аппарат «нырять» или задирать нос вверх при полете).

Классификация

Аэродинамические характеристики классифицируются по условиям и свойствам воздушного потока, включая скорость, сжимаемость и вязкость. Внешняя аэродинамика – это исследование потока вокруг твердых объектов различной формы. Примерами являются оценка подъема и вибраций самолета, а также ударных волн, которые образуются перед носом ракеты.

Внутренняя аэродинамика – это исследование воздушного потока, перемещающегося через отверстия (проходы) в твердых объектах. Например, она охватывает изучение потоков через реактивный двигатель.

Аэродинамические показатели также могут быть классифицированы в зависимости от скорости потока:

  • Дозвуковой называют скорость, меньшую скорости звука.
  • Околозвуковой (трансзвуковой) – если присутствуют скорости как ниже, так и выше скорости звука.
  • Сверхзвуковой – когда скорость потока больше скорости звука.
  • Гиперзвуковая – скорость потока намного больше скорости звука. Обычно под этим определением подразумевают скорости с числами Маха выше 5.

Аэродинамика вертолета

Если принцип полета самолета основан на подъемной силе при поступательном движении, оказываемой на крыло, то вертолет как бы сам создает подъемную силу за счет вращения лопастей в режиме осевого обдува (то есть без поступательной скорости). Благодаря данной особенности геликоптер способен зависать в воздухе на месте и совершать энергичные маневры вокруг оси.

аэродинамика вертолета

Другие области применения

Естественно, аэродинамика применима не только к летательным аппаратам. Сопротивление воздуха испытывают все объекты, движущиеся в пространстве в газовой и жидкой среде. Известно, что водные обитатели – рыбы и млекопитающие – обладают обтекаемыми формами. На их примере можно проследить аэродинамику в действии. Ориентируясь на животный мир, люди также делают водный транспорт заостренной либо каплевидной формы. Это касается кораблей, катеров, подводных лодок.

лучшая аэродинамика

Значительное сопротивление воздуха испытывают транспортные средства: оно возрастает по мере увеличения скорости. Для достижения лучшей аэродинамики автомобилям придают обтекаемую форму. Особенно это актуально для спорткаров.

Статья закончилась. Вопросы остались?
Добавить смайл
  • :smile:
  • :wink:
  • :frowning:
  • :stuck_out_tongue_winking_eye:
  • :smirk:
  • :open_mouth:
  • :grinning:
  • :pensive:
  • :relaxed:
  • :heart:
Подписаться
Я хочу получать
Правила публикации
Следят за новыми комментариями — 7
Редактирование комментария возможно в течении пяти минут после его создания, либо до момента появления ответа на данный комментарий.