Интерференции в тонких пленках: явление и условия для его возникновения

Сегодня мы расскажем об интерференции в тонких пленках. В фокусе нашего внимания открытие, исследование и применения этого замечательного физического явления.

Определение

интерференции в тонких пленках

Прежде чем описывать какой-то закон, сначала надо понять, что за составляющие в него входят. Если этого не сделать, то читатель может пропустить важные детали, и восприятие научного факта исказится. Школьник, который пропустил одно занятие по физике из-за болезни или лени, должен обязательно разобрать эту тему самостоятельно. Потому что каждое следующее понятие опирается на предыдущее. Если упустить одно значение, непонятной будет вся остальная физика. Прежде чем приступать к выводу интерференции в тонких пленках, надо сначала дать определение явлению.

Этот феномен может относиться к любым колебательным процессам. Интерферировать могут волны ветра, моря и звука. Взаимодействие происходит даже у таких сложных квазичастиц, как коллективное колебание решетки кристаллов.

Интерференция – это явление, которое происходит при встрече в одном месте нескольких волн. Оно состоит в том, что при сложении изменяется амплитуда результирующего колебания. Это значит, что волны могут усилить, погасить друг друга или пройти дальше без изменений.

Свет

явление интерференции в тонких пленках

Явление интерференции в тонких пленках – это взаимодействие волн света. Так что прежде чем приступать к описанию феномена, надо пояснить природу этих колебаний.

Свет – это квант электромагнитного поля. Фотон обладает свойствами как волны, так и частицы. Пока квант движется сквозь пространство, он нерушим и вечен. Доказательством тому свет далеких галактик. Некоторые из них, возможно, уже поменяли форму или вообще перестали существовать. Но их излучение летело сквозь космос миллиарды лет, пока не достигло взгляда людей.

Основной источник света – электронные переходы в атоме. Внутри звезд происходит мощная термоядерная реакция, в результате которой выделяются все виды электромагнитного излучения. Видимый свет – только небольшой участок всей шкалы, который доступен человеческому зрению.

Свойства волны

Чтобы описать кратко интерференцию в тонких пленках, надо рассказать о волновых свойствах света. Для понимания формы идеального колебания без затухания надо только посмотреть на график синуса или косинуса в привычных декартовых координатах. Основные свойства фотона следующие:

  1. Длина волны. Обозначается греческой буквой λ. Длина волны – это расстояние между двумя одинаковыми фазами. Нагляднее всего эта величина демонстрируется как промежуток между двумя соседними максимумами или минимумами.
  2. Частота. В зависимости от вида обозначается по-разному: линейная частота – это ν, циклическая – ω, а если эта величина выражается как функция, то она пишется латинской буквой f, причем непременно курсивом. Частота и длина волны связаны соотношением λ * ν = c, где c – это скорость света в вакууме. Таким образом, зная одну величину, другую получить очень просто.
  3. Амплитуда. Для интерференции данное свойство волны самое важное. Это высота максимумов и минимумов колебания. Именно амплитуда изменяется, когда встречаются две волны.
  4. Фаза. Для единичного кванта этот фактор значения не имеет. При взаимодействии важна разница фаз. Состояние (максимум, минимум или стремление к ним), в котором пришли в одно место две волны, влияет на конечную интенсивность при интерференции.
  5. Поляризация. В целом это свойство описывает форму колебания. Поляризация света бывает линейной, круговой и эллиптической.

Преломление, отражение

явление интерференции света в тонких пленках

Непосредственно явление интерференции света в тонких пленках связано еще с несколькими феноменами линейной оптики.

Встречая препятствие, свет может действовать по-разному:

  • отразиться;
  • преломиться;
  • рассеяться;
  • поглотиться.

В последнем случае фотон отдает свою энергию веществу, и там происходят какие-то изменения. Чаще всего это просто нагрев. Недаром вещь, оставленная на солнцепеке, становится очень горячей. Много разных квантов передают забытому детьми мячу свою энергию.

Рассеяние тоже подразумевает, что свет взаимодействует с материей: он поглощается и вновь излучается обратно. Часто выходящие кванты имеют другую длину волны или поляризацию.

Преломление и отражение не изменяют свойства пучка, разница лишь в направлении распространения света.

Все эти процессы участвуют, например, в формировании изображения поверхности озера.

Поведение света в тонких покрытиях

интерференция в тонких пленках кратко

Простейшим примером пленочного покрытия является мыльная пена. Мыло увеличивает поверхностное натяжение воды. В итоге она образует очень большие площади при маленькой толщине. Мыльные пузыри переливаются всеми цветами радуги. И сейчас мы объясним, почему.

На пленку падает свет. На верхней границе покрытия часть его отражается, часть преломляется. Нас интересует второй пучок, который оказался внутри вещества. Он достигает дна, и дальше тоже часть преломляется, а часть отражается обратно внутрь пленки. Тот свет, который идет в следующую среду, для наблюдателя потерян. А вот тот, который возвращается обратно в пленку, нам как раз интересен, потому что на границе он опять преломляется и выходит в первую среду, из которой он первоначально вошел. Получается, что входящий и выходящий пучки параллельны друг другу. Это один и тот же свет, только фаза его на выходе изменилась. Разница определит, что увидит наблюдатель: светлую полосу или темную. Описанный процесс составляет сущность интерференции в тонких пленках. Кольца Ньютона, которые наблюдаются в параллельном пучке света между выпуклой линзой и плоской стеклянной пластиной, фактически имеют ту же природу. Их очень просто наблюдать: этот опыт способны произвести даже школьники на уроках физики.

Расстояние между светлыми полосами

Надеемся, читатель вполне уяснил себе механизм взаимодействия света и тонких покрытий. Теперь приведем некоторые формулы.

На выходе из пленки наблюдается картина светлых и темных областей. Площади, на которых конечная картина имеет одну и ту же освещенность, называется полосами равного наклона. Интерференция в тонких пленках дает нам следующую формулу для их расчета:

2m * λ = (2nh * cosβ ± λ) / 2.

Здесь: λ – длина волны падающего излучения, m – порядок интерференции, β – угол между преломленным в первый раз пучком и нормалью к поверхности, n – показатель преломления пленки, а h – ее толщина.

Следует отметить, что данное условие покажет геометрическое место точек наиболее светлых областей интерференционной картины.

Таким образом расположены только те пучки, которые падают на поверхность пленки под одним и тем же углом. Именно поэтому они называются полосами равного наклона.

Фотоаппараты и очки

интерференция в тонких пленках кольца ньютона

Школьник, который находит физику скучным предметом, наверняка задает себе вопрос: «Зачем все это нужно?». Тем не менее взаимодействие света и тонких покрытий используется в повседневной жизни достаточно широко.

На линзах любой фото- и телеаппаратуры есть напыление: тончайшая прозрачная пленка. Ее толщина подобрана так, чтобы камера не давала зеленых бликов (свет этой длины волны гасит сам себя, проходя через слой на поверхности стекла). Такое решение делает изображение контрастным и ярким. Ведь человек лучше всего видит зеленый спектр и недостатки этого цвета воспринимает наиболее четко.

Просветляющее напыление наносится также на линзы микроскопов и телескопов. И не обязательно толщина пленки соответствует зеленому цвету. Если ученый исследует процессы с инфракрасным или ультрафиолетовым излучением, аппаратура помогает ему именно в этом диапазоне.

Лазеры

интерференция в тонких пленках полосы равного наклона

Также интерференция применяется в лазерах, но этот факт известен немногим.

Сегодня без лазеров не обходится ни один из видов человеческой деятельности. Устройство состоит из трех частей – накачки, рабочего тела и отражателя. Зеркало расположено на торцах основного излучающего материала. Его предназначение – собирать генерируемые фотоны конкретной длины волны в одном направлении. Этот элемент прибора часто представляет собой ряд тонких пленок, интерференция на которых позволяет проходить дальше только нужному излучению.

Статья закончилась. Вопросы остались?
Комментарии 0
Подписаться
Я хочу получать
Правила публикации
Редактирование комментария возможно в течении пяти минут после его создания, либо до момента появления ответа на данный комментарий.