Седиментационный анализ: определение, формула и примеры

Подписаться Редактировать статью

Суть седиментационного метода анализа заключается в измерении скорости, с которой частицы оседают (преимущественно из жидкой среды). А используя значения скорости оседания, рассчитывают размеры этих частиц и их удельную поверхность. С помощью этого метода определяют параметры частиц многих видов дисперсных систем, например, суспензий, аэрозолей, эмульсий, то есть тех, которые широко распространены и важны для различных областей промышленности.

Понятие дисперсности

Одним из главных технологических параметров, характеризующих вещества и материалы в различных производственных процессах, является их дисперсность. Она обязательно учитывается во время подбора аппаратов для химической технологии, при производстве разнообразных пищевых продуктов и т.д. Связано это не только с тем, что при уменьшении частичек веществ возрастает площадь поверхности фаз и повышается скорость их взаимодействия, но также с тем, что при этом меняются некоторые свойства системы. В частности, возрастает растворимость, увеличивается реакционная способность вещества, понижаются температуры фазовых переходов. Поэтому возникла необходимость в нахождении количественных характеристик дисперсности различных систем и в седиментационном анализе.

конусы для седиментационного анализа

В зависимости от того, как соотносятся размеры частиц в дисперсной фазе, системы подразделяют на монодисперсные и полидисперсные. Первые состоят исключительно из частиц одного размера. Такие дисперсные системы встречаются довольно редко и в реальности являются очень близкими к истинным монодисперсным. Зато подавляющее большинство существующих дисперсных систем - полидисперсные. Это значит, что они состоят из различающихся по своим размерам частиц, причем их содержание неодинаково. В ходе седиментационного анализа дисперсных систем выполняют определение размеров образующих их частиц с последующим построением кривых распределения их по размерам.

Теоретические основы

Седиментацией называется процесс выпадения в осадок частиц, составляющих дисперсную фазу в газообразной или жидкой средах под действием силы тяжести. Седиментация может быть обратной, если происходит всплывание частиц (капель) в различных эмульсиях.

обратная седиментация

Величину силы тяжести Fg, действующей на частицы шарообразной формы, можно вычислить по формуле, учитывающей гидростатическую поправку:

Fg=4/3·π·r3·(ρ-ρ0)·g,

где ρ – плотность вещества; r – радиус частиц; ρ0 – плотность жидкости; g – ускорение свободного падения.

Противодействует оседанию частиц сила трения Fη, описываемая законом Стокса:

Fη=6·π·η·r·ᴠсед,

где ᴠсед – скорость движения частиц, а η – вязкость жидкости.

В некоторый момент времени частицы начинают оседать с постоянной скоростью, объясняющейся равенством противодействующих сил Fg=Fη, а значит, справедливо и равенство:

4/3·π·r3·(ρ-ρ0)·g=6·π·η·r·ᴠсед. Преобразовав его, можно получить формулу, отражающую взаимосвязь радиуса частицы со скоростью ее оседания:

r=√(9η/(2·(ρ-ρ0)·g))·ᴠсед=K·√ᴠсед.

Если учитывать, что скорость движения частиц можно определить как отношение ее пути H к времени движения τ, то можно записать уравнение Стокса:

сед=Н/т.

Тогда радиус частицы можно связать с временем ее оседания уравнением:

r=K·√Н/т.

Однако стоит отметить, что такое теоретическое обоснование седиментационного анализа будет справедливо при соблюдении ряда условий:

  • Размер твердых частиц должен соответствовать значениям от 10–5 до 10–2 см.
  • Частицы должны иметь сферическую форму.
  • Частицы должны двигаться с постоянной скоростью и независимо от соседних частиц.
  • Трение должно быть внутренним явлением дисперсионной среды.

В связи с тем, что в реальных суспензиях зачастую содержатся частицы, существенно отличающиеся формой от шарообразных, для целей седиментационного анализа вводят понятие эквивалентного радиуса. Для этого в расчетные уравнения подставляют радиус гипотетических шарообразных частиц, выполненных из того же материала, что и реальные в изучаемой суспензии, и оседающие с той же скоростью.

На практике частицы в дисперсных системах неоднородны по своим размерам, и главной задачей седиментационного анализа можно назвать анализ распределения частиц в них по размерам. Иными словами, в ходе исследования полидисперсных систем находят относительное содержание различных фракций (совокупность частиц, размеры которых лежат в определенном интервале).

дисперсные системы

Особенности седиментационного анализа

Существует несколько подходов к выполнению анализа дисперсных систем седиментацией:

  • наблюдение в гравитационном поле за скоростью, с которой оседают частицы в спокойной жидкости;
  • взмучивание суспензии для последующего разделения ее на фракции частиц заданных размеров в струе жидкости;
  • разделение порошкообразных веществ на фракции с определенными размерами частиц, выполняемое посредством воздушной сепарации;
  • наблюдение в центробежном поле за параметрами оседания высокодисперсных систем.

Одним из наиболее широко применяемых является первый вариант анализа. Для его осуществления скорость седиментации определяют каким-либо из следующих способов:

  • наблюдая через микроскоп;
  • взвешивая накапливающийся осадок;
  • определяя концентрацию дисперсной фазы в определенный период процесса оседания;
  • измеряя гидростатическое давление в процессе оседания;
  • определяя плотность суспензии в период оседания.

Понятие суспензии

Под суспензиями понимают грубодисперсные системы, образуемые твердой дисперсной фазой, размеры частиц которой превышают 10-5 см, и жидкой дисперсионной средой. Часто суспензии характеризуют как взвеси порошкообразных веществ в жидкостях. На деле это не совсем верно, поскольку взвеси являются разбавленными суспензиями. Частицы твердой фазы кинетически независимы и могут свободно перемещаться в жидкости.

В реальных (концентрированных) суспензиях, которые нередко называют пастами, твердые частицы взаимодействуют друг с другом. Это приводит к образованию некой пространственной структуры.

Существует еще один вид дисперсных систем, образуемых твердыми дисперсными фазами и жидкими дисперсионными средами. Называют их лиозолями. Однако размер твердых частиц в них намного меньше (от 10-7 до 10-5 см). В связи с этим седиментация в них незначительна, зато характеризуются лиозоли такими явлениями, как броуновское движение, осмос и диффузия. В основе седиментационного анализа суспензий лежит их кинетическая неустойчивость. Это значит, что суспензии характеризуются изменчивостью во времени таких параметров, как дисперсность и равновесное распределение частиц в дисперсионной среде.

Методика

Седиментационный анализ выполняют, используя торсионные весы с чашкой из фольги (диаметр 1-2 см) и высокий стакан. Перед началом анализа взвешивают чашку в дисперсионной среде, погружая ее в наполненный стакан и уравновешивая весы. Вместе с этим измеряется глубина ее погружения. После этого чашка извлекается и быстро помещается в стакан с исследуемой суспензией, при этом она должна быть подвешена на крючок коромысла весов. В тот же момент включатся секундомер. В таблицу заносят данные о массе выпавшего осадка в произвольные моменты времени.

Время от начала исследования, с Масса чашки с осадком, г Масса осадка, г 1/t, с-1 Предел седиментации, г

Используя данные таблицы, вычерчивают кривую седиментации на миллиметровой бумаге. По оси ординат откладывается масса осевших частиц, а по оси абсцисс - время. При этом выбирается адекватный масштаб, чтобы удобно было выполнять дальнейший графический расчет.

кривая седиментационного анализа

Анализ кривой

В монодисперсной среде скорость оседания частиц будет одинакова, а значит, и отстаивание будет характеризоваться равномерностью. Кривая седиментации в этом случае будет имеет линейный характер.

Во время отстаивания полидисперсной суспензии (что и происходит на практике) частицы различных размеров отличаются и скоростью оседания. Это на графике выражается в размытости границы оседающего слоя.

Кривую оседания обрабатывают разбивкой ее на несколько сегментов и проведением касательных. Каждая касательная будет характеризовать оседание отдельной монодисперсной части суспензии.

Общее представление о гранулометрическом составе

Количественное содержание частиц определенной величины в породе обычно называют гранулометрическим составом. От него зависят некоторые свойства пористых сред, например, проницаемость, удельная поверхность, пористость и т.п. По этим свойствам в свою очередь можно сделать выводы о геологических условиях образования залежей пород. Именно поэтому одним из первых этапов исследования осадочных пород является гранулометрический анализ.

фракции частиц различного размера

Так, по результатам анализа гранулометрического состава песков, контактирующих с нефтью, выбирают оборудование и порядок работ в нефтепромысловой практике. Он помогает подобрать фильтры для предотвращения попадания песка в скважину. От количества глинистых и коллоидно-дисперсных минералов в составе зависят процессы поглощения ионов, а также степень набухания пород в воде.

Седиментационный анализ гранулометрического состава пород

В связи с тем, что анализ дисперсных систем, основанный на принципах седиментации, имеет ряд ограничений, применение его в чистом виде для гранулометрического исследования состава пород не обеспечивает должной достоверности и точности. Сегодня он выполняется с применением современного оборудования с использованием компьютерных программ.

современное оборудование для седиментационного анализа

Они позволяют проводить изучение частиц породы из стартового слоя, позволяют непрерывно фиксировать накопление осадка, исключая аппроксимацию уравнениями, измеряют скорость осаждения напрямую. И что не менее важно, допускают исследование седиментации частиц неправильной формы. Процентное содержание фракции того или иного размера определяется компьютером, основываясь на общей массе пробы, а значит, не требуется ее взвешивание перед анализом.


Эти татуировки музыкантов требуют особого внимания
Музыка
Какое время было худшим в истории человечества
Наука
Сотрудники магазина IKEA приютили бродячих собак
Окружающая среда
Как избежать повышенного слюноотделения во время сна
Сон
Ани Лорак
Знаменитости
Истории о людях, которых считали монстрами
Мистика