Самая высокая температура во Вселенной. Спектральные классы звезд

Вещество нашей Вселенной структурно организовано и образует большое многообразие феноменов различного масштаба с весьма сильно разнящимися физическими свойствами. Одно из важнейших таких свойств – температура. Зная этот показатель и используя теоретические модели, можно судить о многих характеристиках того или иного тела – о его состоянии, строении, возрасте.

Разброс значений температуры у различных наблюдаемых компонентов Вселенной весьма велик. Так, самая низкая величина ее в природе зафиксирована для туманности Бумеранг и составляет всего 1 K. А каковы самые высокие температуры во Вселенной, известные на сегодняшний день, и о каких особенностях различных объектов свидетельствуют? Для начала посмотрим, как же ученые определяют температуру удаленных космических тел.

Спектры и температура

Всю информацию о далеких звездах, туманностях, галактиках ученые получают, исследуя их излучение. По тому, на какой частотный диапазон спектра приходится максимум излучения, определяется температура как показатель средней кинетической энергии, которой обладают частицы тела, – ведь частота излучения связана прямой зависимостью с энергией. Так что самая высокая температура во Вселенной должна отражать, соответственно, и наибольшую энергию.

Чем более высокими частотами характеризуется максимум интенсивности излучения, тем горячее исследуемое тело. Однако полный спектр излучения распределен по очень широкому диапазону, и по особенностям видимой его области («цвету») можно делать определенные общие выводы о температуре, например, звезды. Окончательная же оценка производится на основе изучения всего спектра с учетом полос эмиссии и поглощения.

Классификация звезд

Спектральные классы звезд

На основе спектральных особенностей, включая цвет, была разработана так называемая Гарвардская классификация звезд. Она включает семь основных классов, обозначаемых буквами O, B, A, F, G, K, M и несколько дополнительных. Гарвардская классификация отражает поверхностную температуру звезд. Солнце, фотосфера которого разогрета до 5780 K, относится к классу желтых звезд G2. Наиболее горячи голубые звезды класса O, самые холодные – красные – принадлежат классу M.

Гарвардскую классификацию дополняет Йеркская, или классификация Моргана-Кинана-Келлман (МКК – по фамилиям разработчиков), подразделяющая звезды на восемь классов светимости от 0 до VII, тесно связанных с массой светила – от гипергигантов до белых карликов. Наше Солнце – карлик класса V.

Примененные совместно, в качестве осей, по которым отложены значения цвет – температура и абсолютная величина – светимость (свидетельствующая о массе), они дали возможность построить график, широко известный как диаграмма Герцшпрунга-Рассела, на котором отражены главные характеристики звезд в их взаимосвязи.

Диаграмма Герцшпрунга - Рассела

Самые горячие звезды

Из диаграммы явствует, что наиболее горячими являются голубые гиганты, сверхгиганты и гипергиганты. Это чрезвычайно массивные, яркие и короткоживущие звезды. Термоядерные реакции в их недрах протекают очень интенсивно, порождая чудовищную светимость и высочайшие температуры. Такие звезды относятся к классам B и O либо к особому классу W (отличается широкими эмиссионными линиями в спектре).

Например, Эта Большой Медведицы (находится на «конце ручки» ковша) при массе, в 6 раз превышающей солнечную, светит в 700 раз мощнее и имеет поверхностную температуру около 22 000 K. У Дзеты Ориона – звезды Альнитак, – которая массивнее Солнца в 28 раз, внешние слои нагреты до 33 500 K. А температура гипергиганта с наивысшей известной массой и светимостью (как минимум в 8,7 миллионов раз мощнее нашего Солнца) – R136a1 в Большом Магеллановом облаке – оценена в 53 000 K.

Однако фотосферы звезд, как бы сильно разогреты они ни были, не дадут нам представления о самой высокой температуре во Вселенной. В поисках более жарких областей нужно заглянуть в недра звезд.

Голубые гиганты в Плеядах

Термоядерные топки космоса

В ядрах массивных звезд, стиснутых колоссальным давлением, развиваются действительно высокие температуры, достаточные для нуклеосинтеза элементов вплоть до железа и никеля. Так, расчеты для голубых гигантов, сверхгигантов и очень редких гипергигантов дают для этого параметра к концу жизни звезды порядок величины 109 K – миллиард градусов.

Строение и эволюция подобных объектов пока еще недостаточно хорошо изучены, соответственно и модели их еще далеко не полны. Ясно, однако, что очень горячими ядрами должны обладать все звезды больших масс, к каким бы спектральным классам они ни принадлежали, – например, красные сверхгиганты. Несмотря на несомненные различия в процессах, протекающих в недрах звезд, ключевым параметром, определяющим температуру ядра, является масса.

Звездные остатки

От массы в общем случае зависит и судьба звезды – то, как она окончит свой жизненный путь. Маломассивные звезды типа Солнца, исчерпав запас водорода, теряют внешние слои, после чего от светила остается вырожденное ядро, в котором уже не может идти термоядерный синтез, – белый карлик. Наружный тонкий слой молодого белого карлика обычно имеет температуру до 200 000 K, а глубже располагается изотермическое ядро, нагретое до десятков миллионов градусов. Дальнейшая эволюция карлика заключается к его постепенному остыванию.

Иллюстрация нейтронной звезды

Гигантские звезды ждет иная судьба – взрыв сверхновой, сопровождающийся повышением температуры уже до значений порядка 1011 K. В ходе взрыва становится возможен нуклеосинтез тяжелых элементов. Одним из результатов подобного феномена является нейтронная звезда – очень компактный, сверхплотный, со сложной структурой остаток погибшей звезды. При рождении он столь же горяч – до сотен миллиардов градусов, однако стремительно остывает за счет интенсивного излучения нейтрино. Но, как мы увидим далее, даже новорожденная нейтронная звезда – не то место, где температура – самая высокая во Вселенной.

Далекие экзотические объекты

Существует класс космических объектов, достаточно удаленных (а значит, и древних), характеризующихся совершенно экстремальными температурами. Это квазары. По современным воззрениям, квазар представляет собой сверхмассивную черную дыру, обладающую мощным аккреционным диском, образуемым падающим на нее по спирали веществом – газом или, точнее, плазмой. Собственно, это активное галактическое ядро в стадии формирования.

Скорость движения плазмы в диске настолько велика, что вследствие трения она разогревается до сверхвысоких температур. Магнитные поля собирают излучение и часть вещества диска в два полярных пучка – джета, выбрасываемых квазаром в пространство. Это чрезвычайно высокоэнергетический процесс. Светимость квазара в среднем на шесть порядков выше светимости самой мощной звезды R136a1.

Квазар в представлении художника

Теоретические модели допускают для квазаров эффективную температуру (то есть присущую абсолютно черному телу, излучающему с той же яркостью) не более 500 миллиардов градусов (5×1011 K). Однако недавние исследования ближайшего квазара 3C 273 привели к неожиданному результату: от 2×1013 до 4×1013 K – десятки триллионов кельвинов. Такая величина сравнима с температурами, достигающимися в явлениях с наивысшим известным энерговыделением – в гамма-всплесках. На сегодняшний день это самая высокая температура во Вселенной, которая была когда-либо зарегистрирована.

Жарче всех

Следует иметь в виду, что квазар 3С 273 мы видим таким, каким он был около 2,5 миллиарда лет назад. Так что, учитывая, что, чем дальше мы заглядываем в космос, тем более отдаленные эпохи прошлого наблюдаем, в поисках самого горячего объекта мы вправе окинуть взглядом Вселенную не только в пространстве, но и во времени.

Первые звезды в ранней Вселенной

Если вернуться к самому моменту ее рождения - приблизительно 13,77 миллиарда лет назад, наблюдать который невозможно, - мы обнаружим совершенно экзотическую Вселенную, при описании которой космология подходит к пределу своих теоретических возможностей, связанному с границами применимости современных физических теорий.

Описание Вселенной становится возможным, начиная с возраста, соответствующего планковскому времени 10-43 секунд. Самый горячий объект в эту эпоху – сама наша Вселенная, с планковской температурой 1,4×1032 K. И это, согласно современной модели ее рождения и эволюции, максимальная температура во Вселенной из всех когда-либо достигавшихся и возможных.

Статья закончилась. Вопросы остались?
Комментарии 0
Подписаться
Я хочу получать
Правила публикации
Редактирование комментария возможно в течении пяти минут после его создания, либо до момента появления ответа на данный комментарий.