Признаки подобия и равенства треугольников. Свойства подобных треугольников

Треугольник является самой простой замкнутой фигурой на плоскости. При изучении школьного курса геометрии рассмотрению его свойств уделяют особое внимание. В данной статье раскроем вопрос признаков подобия и равенства треугольников.

Какие треугольники называются подобными, а какие равными?

Логично предположить, что две рассматриваемые фигуры будут равны между собой, если они имеют все одинаковые углы и длины сторон. Что касается подобия, то здесь дело обстоит немного сложнее. Два треугольника будут подобны тогда, когда каждый угол одного будет равен соответствующему углу другого, а стороны, лежащие напротив равных углов обеих фигур, будут пропорциональны. Ниже изображен рисунок, на котором представлены два подобных треугольника.

Пример подобных треугольников

Используя этот рисунок, запишем в виде математических равенств данное выше определение: B = G, A = E, C = F, BA / GE = AC / EF = BC / GF = r, здесь одна латинская буква означает угол, а две буквы - длину стороны. Величина r носит название коэффициента подобия. Понятно, что если r = 1, то имеют место не только подобные, но и равные треугольники.

Признаки подобия

Говоря о свойствах и признаках подобия и равенства треугольников, следует перечислить три основных критерия, по которым можно определить, являются ли рассматриваемые фигуры подобными или нет.

Первый признак подобия

Итак, две фигуры будут подобными между собой, если выполняется одно из следующих условий:

  1. Их два угла равны. Поскольку сумма углов треугольника эквивалентна 180o, то равенство первых двух из них автоматически означает, что одинаковыми будут и третьи. Используя рисунок выше, этот признак можно записать так: если B = G и A = E, то ABC и GEF являются подобными. Если же в этом случае будут равными хотя бы по одной стороне обоих фигур, тогда можно говорить о полной эквивалентности треугольников.
  2. Две стороны пропорциональны и углы между ними одинаковые. Например, BA / GE = AC / EF и A = E, тогда GEF и ABC будут подобными. Заметим, что углы A и E лежат между соответствующими пропорциональными сторонами.
  3. Все три стороны взаимно пропорциональны. Излагая математическим языком, получаем: BA / GE = AC / EF = BC / GF = r, тогда рассматриваемые фигуры тоже являются подобными.

Отметим еще раз, что для доказательства подобия достаточно привести какой-либо один из представленных признаков. Логично, что все остальные будут выполняться также.

Прямоугольные треугольники: когда они подобны, а когда равны?

Говоря о признаках равенства и подобия прямоугольных треугольников, следует отметить сразу, что у каждого из них по одному углу уже равны (90o).

Выражения для подобных треугольников

Последний факт приводит к следующей формулировке изложенных выше критериев подобия:

  1. Если в двух треугольниках прямоугольных равен всего один угол, который не является прямым, то такие фигуры подобны между собой.
  2. Если катеты пропорциональны между собой, тогда фигуры тоже будут подобны, поскольку угол между катетами является прямым.
  3. Наконец, пропорциональности всего двух любых сторон для обоих прямоугольных треугольников достаточно для доказательства их подобия. Причина этого заключается в том, что стороны данных фигур связаны между собой теоремой Пифагора, поэтому пропорциональность 2-х из них приводит к пропорциональности с аналогичным коэффициентом подобия и для третьих сторон.

Что касается равенства треугольников с прямыми углами, то здесь просто запомнить: если два каких-либо элемента (прямой угол не считается) обеих фигур равны, то равны и сами фигуры. Например, этими двумя элементами могут быть острый угол и катет, катет и гипотенуза или гипотенуза и острый угол.

Свойства треугольников подобных

Из рассмотренных признаков подобия и равенства треугольников свойства можно выделить такие:

  1. Периметры этих фигур относятся друг к другу как коэффициент подобия, то есть P1 / P2 = r, где P1 и P2 - периметры 1-го и 2-го треугольников, соответственно.
  2. Площади подобных фигур относятся как квадрат коэффициента подобия, то есть: S1 / S2 = r2, где S1 и S2 - площади 1-го и 2-го треугольников, соответственно.

Оба эти свойства можно доказать самостоятельно. Суть доказательства сводится к применению математической записи подобия между сторонами фигур. Здесь приведем лишь доказательство 1-го свойства.

Подобные треугольники в жизни

Пусть a, b, c - длины сторон одного треугольника и a', b', c' - стороны второго. Поскольку фигуры подобны, то можно записать: a = r * a', b = r * b', c = r * c'. Теперь эти выражения подставим в отношении их периметров, получим: P1 / P2 = (a + b + c) / (a' + b' + c') = (r * a' + r * b' + r*c') / (a' + b' + c') = r(a' + b' + c') / (a' + b' + c') = r.

Пример решения задачи

Признаки подобия и равенства треугольников можно использовать для решения различных геометрических задач. Ниже приводится один из примеров.

Имеются два треугольника. У одного из них стороны равны 7,6 см, 4,18 см и 6,65 см, а у другого 3,5 см, 2,2 см и 4 см. Необходимо определить, подобны ли эти фигуры.

Поскольку даны значения трех сторон, то можно сразу проверить 3-й критерий подобия. Сложность здесь состоит в том, что нужно понять, между какими сторонами брать отношения. Тут следует воспользоваться простыми логическими рассуждениями: коэффициенты подобия могут быть равными, если делить самую маленькую сторону одного треугольника на аналогичную для другого и так далее. Поэтому имеем: 4,18 / 2,2 = 1,9; 6,65 / 3,5 = 1,9; 7,6 / 4 = 1,9. Проверив отношение всех сторон, можно с уверенностью сказать, что треугольники являются подобными, поскольку выполняется 3-й критерий.

Статья закончилась. Вопросы остались?
Комментарии 0
Подписаться
Я хочу получать
Правила публикации
Редактирование комментария возможно в течении пяти минут после его создания, либо до момента появления ответа на данный комментарий.