Электрический разряд: понятие, виды, энергия и единицы измерения

Век, в котором мы живем, можно назвать временем электричества. Работа компьютеров, телевизоров, автомобилей, спутников, приборов искусственного освещения – это лишь малая часть примеров, где оно используется. Одним из интересных и важных для человека процессов является электрический разряд. Рассмотрим подробнее, что он собой представляет.

Краткая история изучения электричества

Когда человек познакомился с электричеством? Ответить на этот вопрос сложно, поскольку поставлен он некорректным образом, ведь наиболее яркое природное явление – молния, известная с незапамятных времен.

Осмысленное изучение электрических процессов началось лишь с конца первой половины XVIII века. Здесь следует отметить серьезный вклад в представления человека об электричестве Чарльза Кулона, исследовавшего силу взаимодействия заряженных частиц, Георга Ома, математически описавшего параметры тока в замкнутой цепи, и Бенджамина Франклина, который провел множество экспериментов, изучая природу вышеназванной молнии. Помимо них, большую роль в развитии физики электричества сыграли такие ученые, как Луиджи Гальвани (изучение нервных импульсов, изобретение первой «батарейки») и Майкл Фарадей (исследование тока в электролитах).

Бенджамин Франклин изучает молнию

Достижения всех названных ученых создали прочный фундамент для изучения и понимания сложных электрических процессов, одним из которых является электрический разряд.

Что представляет собой разряд и какие условия необходимы для его существования?

Разряд электрического тока – это физический процесс, который характеризуется наличием потока заряженных частиц между двумя пространственными областями, имеющими разный потенциал в газовой среде. Разберем это определение.

Во-первых, когда говорят о разряде, то всегда имеют в виду газ. Разряды в жидкостях и твердых телах тоже могут возникать (пробой твердого конденсатора), однако процесс изучения этого явления проще рассмотреть в менее плотной среде. Более того, именно разряды в газах часто наблюдаются и имеют большое значение для жизнедеятельности человека.

Во-вторых, как сказано в определении электрического разряда, он возникает только при соблюдении двух важных условий:

  • при существования разности потенциалов (напряженности электрического поля);
  • наличии носителей заряда (свободных ионов и электронов).

Разность потенциалов обеспечивает направленное движение заряда. Если она превышает некоторое пороговое значение, то несамостоятельный разряд переходит в самоподдерживающийся или самостоятельный.

Что касается свободных носителей заряда, то в любом газе они всегда присутствуют. Их концентрация, естественно, зависит от ряда внешних факторов и свойств самого газа, но сам факт их наличия является бесспорным. Связано это с существованием таких источников ионизации нейтральных атомов и молекул, как ультрафиолетовые лучи от Солнца, космическое излучение и естественная радиация нашей планеты.

Соотношение между разностью потенциалов и концентрацией носителей определяет характер разряда.

Виды электрических разрядов

Приведем список этих видов, а затем подробнее охарактеризуем каждый из них. Итак, все разряды в газовых средах принято разделять на следующие:

  • тлеющий;
  • искровой;
  • дуговой;
  • коронный.

Физически они отличаются друг от друга лишь мощностью (плотностью тока) и, как следствие, температурой, а также характером их проявления во времени. Во всех случаях речь идет о переносе положительного заряда (катионы) к катоду (область низкого потенциала) и отрицательного заряда (анионы, электроны) к аноду (зона высокого потенциала).

Тлеющий разряд

Тлеющий разряд неоновых ламп

Для его существования необходимо создать низкие давления газа (в сотни и тысячи раз меньше атмосферного). Тлеющий разряд наблюдается в катодных трубках, которые заполняются каким-либо газом (например, Ne, Ar, Kr и другие). Приложение напряжения к электродам трубки приводит к активации следующего процесса: имеющиеся в газе катионы начинают ускоренно двигаться, достигнув катода, они ударяют по нему, передавая импульс и выбивая электроны. Последние при наличии достаточной кинетической энергии могут приводить к ионизации нейтральных молекул газа. Описанный процесс будет самоподдерживающимся только в случае достаточной энергии катионов, бомбардирующих катод, и их определенного количества, что зависит от разности потенциалов на электродах и давления газа в трубке.

Тлеющий разряд светится. Излучение электромагнитных волн обусловлено двумя идущими параллельно процессами:

  • рекомбинация пар электрон-катион, сопровождаемая выделением энергии;
  • переход нейтральных молекул (атомов) газа из возбужденного состояния в основное.

Типичными характеристиками этого вида разряда являются небольшие токи (несколько миллиампер) и небольшие стационарные напряжения (100–400 В), однако пороговое напряжение равно нескольким тысячам вольт, что зависит от давления газа.

Примерами тлеющего разряда являются люминесцентные и неоновые лампы. В природе к этому типу можно отнести северное сияние (движение потоков ионов в магнитном поле Земли).

Великолепное северное сияние

Искровой разряд

Это типичный вид атмосферного электрического разряда, который проявляется в виде молнии. Для его существования необходимо не только наличие больших давлений газа (1 атм и больше), но и огромных напряжений. Воздух представляет собой достаточно хороший диэлектрик (изолятор). Его проницаемость лежит в пределах от 4 до 30 кВ/см, что зависит от наличия в нем влажности и твердых частиц. Эти цифры говорят о том, что для получения пробоя (искры) необходимо приложить минимум 4 000 000 вольт на каждый метр воздуха!

В природе такие условия возникают в кучевых облаках, когда в результате процессов трения между воздушными массами, конвекции воздуха и кристаллизации (конденсации) происходит перераспределение зарядов таким образом, что нижние слои туч заряжаются отрицательно, а верхние - положительно. Разность потенциалов постепенно накапливается, когда ее значение начинает превышать изоляционные возможности воздуха (несколько млн вольт на метр), то возникает молния – электрический разряд, который длится в течение долей секунды. Сила тока в нем достигает 10–40 тысяч ампер, а температура плазмы в канале поднимается до 20 000 К.

Сильные разряды молнии

Минимальную энергию, которая выделяется в процессе молнии, можно вычислить, если принять во внимание следующие данные: процесс развивается в течение t=1*10-6 с, I = 10 000 А, U = 109 В, тогда получим:

E = I*U*t = 10 млн Дж

Полученная цифра эквивалентна энергии, которая освобождается при взрыве 250 кг динамита.

Дуговой разряд

Дуговой разряд

Так же как и искровой, он возникает при наличии достаточного давления в газе. Его характеристики практически полностью аналогичны искровому, но имеются и отличия:

  • во-первых, токи достигают десяти тысяч ампер, но напряжение при этом составляет несколько сотен вольт, что связано с высокой проводимостью среды;
  • во-вторых, дуговой разряд существует стабильно во времени, в отличие от искрового.

Переход в этот вид разряда осуществляется постепенным повышением напряжения. Поддерживается разряд за счет термоэлектронной эмиссии с катода. Ярким его примером является сварочная дуга.

Коронный разряд

Огни Святого Эльма

Этот тип электрического разряда в газах часто наблюдали моряки, которые путешествовали в Новый Мир, открытый Колумбом. Они называли синеватое свечение на концах мачт «огнями Святого Эльма».

Возникает коронный разряд вокруг объектов, имеющих очень сильную напряженность электрического поля. Такие условия создаются вблизи острых предметов (мачт кораблей, зданий с остроконечными крышами). Когда тело имеет некоторый статический заряд, то напряженность поля на его концах приводит к ионизации окружающего воздуха. Возникшие ионы начинают свой дрейф к источнику поля. Эти слабые токи, вызывающие аналогичные процессы, что и в случае тлеющего разряда, приводят к появлению свечения.

Опасность разрядов для здоровья человека

Коронный и тлеющий разряды особой опасности не представляют для человека, поскольку они характеризуются низкими токами (миллиамперы). Два других из вышеназванных разрядов являются смертельно опасными в случае прямого контакта с ними.

Если человек наблюдает приближение молнии, то он должен отключить все электроприборы (включая мобильные телефоны), а также расположиться так, чтобы не выделяться среди окружающей местности в плане высоты.

Статья закончилась. Вопросы остались?
Комментариев 1
Подписаться
Я хочу получать
Правила публикации
0
Наверное это только наблюдения эмпирической науки, есть и более сложные разряды, природа поля и накопления электричества обсуждаются до сих пор. Окончательной теории нет. Например , известно и зафиксировано развитие молнии и разряда, идущего в другую сторону, более того навстречу друг другу - это пока необъяснимо. Лучше всех на Земле разбирался с этим Тесла... О нем ходили легенды, многие его эксперименты не поняты до сих пор...
Копировать ссылку
Редактирование комментария возможно в течении пяти минут после его создания, либо до момента появления ответа на данный комментарий.