Голография - это... Понятие, принцип действия, применение

Голографическое изображение сегодня находит все большее применение. Некоторые даже считают, что оно может со временем заменить известные нам средства связи. Так это или нет, но уже сейчас оно активно используется в самых разных отраслях. К примеру, всем нам знакомы голографические наклейки. Множество производителей использует их как средство защиты от подделки. На фото ниже представлены некоторые голографические наклейки. Их применение - очень эффективный способ защиты товаров или документов от подделки.

История изучения голографии

Объемное изображение, получаемое в результате преломления лучей, начало изучаться относительно недавно. Однако мы уже можем говорить о существовании истории его изучения. Деннис Габор, английский ученый, в 1948 году впервые определил, что такое голография. Это открытие было очень важным, но его большое значение в то время не было еще очевидным. Работавшие в 1950-е годы исследователи страдали от отсутствия источника света, обладающего когерентностью, – очень важным свойством для развития голографии. Первый лазер был изготовлен в 1960 году. С помощью этого прибора можно получить свет, имеющий достаточную когерентность. Юрис Упатниекс и Иммет Лейт, американские ученые, использовали его для создания первых голограмм. С их помощью получались трехмерные изображения предметов.

В последующие годы исследования продолжались. Сотни научных статей, в которых изучалось понятие о голографии, с тех пор были опубликованы, а также издано множество книг, посвященных этому методу. Однако эти труды адресованы специалистам, а не широкому читателю. В данной статье мы постараемся рассказать обо всем доступным языком.

Что такое голография

Можно предложить следующее определение: голография - это получаемая с помощью лазера объемная фотография. Однако данное определение не совсем удовлетворительно, так как есть множество иных видов трехмерной фотографии. Тем не менее в нем отражено наиболее существенное: голография - это технический метод, который позволяет "записывать" внешний вид того или иного объекта; с ее помощью получается трехмерное изображение, выглядящее так, как реальный предмет; применение лазеров сыграло решающую роль для ее развития.

Голография и ее применение

Исследование голографии позволяет прояснить многие вопросы, связанные с обычной фотографией. В качестве изобразительного искусства объемное изображение может даже бросить вызов последней, поскольку оно позволяет отражать окружающий мир более точно и правильно.

Ученые иногда выделяют эпохи в истории человечества по средствам связи, которые были известны в те или иные столетия. Можно говорить, к примеру, о существовавших в Древнем Египте иероглифах, об изобретении в 1450 году печатного станка. В связи с наблюдаемым в наше время техническим прогрессом новые средства связи, такие как телевидение и телефон, заняли господствующее положение. Хотя голографический принцип находится еще в младенческом состоянии, если говорить о его использовании в средствах информации, существуют основания предполагать, что основанные на нем устройства в будущем смогут заменить известные нам средства связи или хотя бы расширить область их применения.

Научно-фантастическая литература и массовая печать нередко преподносят голографию в неверном, искаженном свете. Они часто создают неправильное представление о данном методе. Объемное изображение, увиденное впервые, завораживает. Однако не меньшее впечатление производит физическое объяснение принципа его устройства.

Интерференционная картина

Способность видеть предметы основана на том, что световые волны, преломляясь ими или отражаясь от них, попадают в наш глаз. Отраженные от некоторого объекта световые волны характеризуются формой волнового фронта, соответствующей форме этого объекта. Картину темных и светлых полос (или линий) создают две группы световых когерентных волн, которые интерферируют. Так образуется объемная голография. При этом данные полосы в каждом конкретном случае составляют комбинацию, зависящую лишь от формы волновых фронтов волн, которые взаимодействуют друг с другом. Такую картину именуют интерференционной. Ее можно зафиксировать, к примеру, на фотографической пластинке, если поместить ее в место, где наблюдается интерференция волн.

Многообразие голограмм

Способом, позволяющим записывать (регистрировать) отраженный от предмета волновой фронт, после чего восстанавливать его так, что наблюдателю кажется, что он видит реальный предмет, и является голография. Это эффект, который объясняется тем, что получаемое изображение трехмерно в такой же мере, что и реальный предмет.

Есть множество различных типов голограмм, в которых легко запутаться. Чтобы однозначно определить тот или иной вид, следует употребить четыре или даже пять прилагательных. Из всего их множества мы рассмотрим только основные классы, которые использует современная голография. Однако сначала нужно рассказать немного о таком волновом явлении, как дифракция. Именно она позволяет нам конструировать (вернее, реконструировать) волновой фронт.

Дифракция

Если какой-либо предмет оказывается на пути света, он отбрасывает тень. Свет огибает этот предмет, заходя частично в область тени. Этот эффект именуют дифракцией. Он объясняется волновой природой света, но объяснить его строго достаточно сложно.

Только в очень малом угле проникает свет в область тени, поэтому мы почти не замечаем этого. Однако если на его пути есть множество мелких препятствий, расстояния между которыми составляют только несколько длин световой волны, данный эффект становится достаточно заметным.

Если падение волнового фронта приходится на большое единичное препятствие, "выпадает" соответствующая его часть, что практически не влияет на оставшуюся область данного волнового фронта. Если же множество мелких препятствий находится на его пути, он изменяется в результате дифракции так, что распространяющийся за препятствием свет будет обладать качественно иным волновым фронтом.

Трансформация настолько сильна, что свет начинает даже распространяться в другом направлении. Выходит, что дифракция позволяет нам преобразовать исходный волновой фронт в совершенно отличный от него. Таким образом, дифракция – механизм, с помощью которого мы получаем новый волновой фронт. Устройство, формирующее его вышеописанным путем, именуется дифракционной решеткой. Расскажем о ней подробнее.

Дифракционная решетка

Это небольшая пластинка с нанесенными на ней тонкими прямыми параллельными штрихами (линиями). Они отстоят друг от друга на сотую или даже тысячную часть миллиметра. Что происходит, если лазерный луч на своем пути встречает решетку, которая состоит из нескольких размытых темных и ярких полос? Его часть будет прямо проходить через решетку, а часть – загибаться. Так образуются два новых пучка, которые выходят из решетки под определенным углом к исходному лучу и находятся по обе стороны от него. В случае если один лазерный пучок обладает, к примеру, плоским волновым фронтом, два образовавшихся по бокам от него новых пучка также будут иметь плоские волновые фронты. Таким образом, пропуская через дифракционную решетку лазерный луч, мы формируем два новых волновых фронта (плоских). По-видимому, дифракционную решетку можно рассматривать как самый простой пример голограммы.

Регистрация голограммы

Знакомство с основными принципами голографии следует начать с изучения двух плоских волновых фронтов. Взаимодействуя, они образуют интерференционную картину, которую регистрируют на помещенной там же, где находился экран, фотографической пластинке. Эта стадия процесса (первая) в голографии называется записью (или регистрацией) голограммы.

Восстановление изображения

Будем считать, что одна из плоских волн – А, а вторая – В. Волна А именуется опорной, а В – предметной, то есть отраженной от того предмета, изображение которого фиксируется. Она может не отличаться ничем от опорной волны. Однако при создании голограммы трехмерного реального объекта формируется значительно более сложный волновой фронт света, отраженного от предмета.

Интерференционная картина, представленная на фотографической пленке (то есть изображение дифракционной решетки), – это и есть голограмма. Ее можно поместить на пути опорного первичного пучка (пучка лазерного света, обладающего плоским волновым фронтом). В этом случае по обе стороны формируются 2 новых волновых фронта. Первый из них представляет собой точную копию волнового предметного фронта, который распространяется в том же направлении, что и волна В. Вышеописанная стадия именуется восстановлением изображения.

Голографический процесс

Интерференционная картина, которую создают две плоские когерентные волны, после ее записи на фотопластинке представляет собой устройство, позволяющее в случае освещения одной из этих волн восстановить другую плоскую волну. Голографический процесс, таким образом, имеет следующие стадии: регистрацию и последующее "хранение" волнового предметного фронта в виде голограммы (интерференционной картины), и его восстановление спустя любое время при прохождении опорной волны через голограмму.

Предметный волновой фронт в действительности может быть любым. К примеру, он может отражаться от некоторого реального предмета, если он при этом является когерентным опорной волне. Образованная двумя любыми волновыми фронтами, обладающими когерентностью, интерференционная картина – это и есть устройство, позволяющее благодаря дифракции преобразовать один из данных фронтов в другой. Именно здесь и спрятан ключ к такому явлению, как голография. Деннис Габор первым обнаружил это свойство.

Наблюдение формируемого голограммой изображения

В наше время для чтения голограмм начинает использоваться особое устройство - голографический проектор. Он позволяет преобразовать картинку из двух- в трехмерную. Однако для того чтобы просматривать простые голограммы, голографический проектор вовсе не требуется. Вкратце расскажем о том, как рассматривать такие изображения.

Чтобы наблюдать формируемое простейшей голограммой изображение, нужно поместить ее примерно на расстоянии 1 метра от глаза. Сквозь дифракционную решетку нужно смотреть в том направлении, в котором плоские волны (восстановленные) выходят из нее. Так как именно плоские волны попадают в глаз наблюдателя, голографическое изображение также является плоским. Оно предстает перед нами будто "глухая стена", которую равномерно освещает свет, имеющий тот же цвет, что и соответствующее лазерное излучение. Так как специфических признаков эта "стена" лишена, невозможно определить, насколько далеко она находится. Кажется, будто смотришь на расположенную в бесконечности протяженную стену, но при этом видишь лишь ее часть, которую удается разглядеть сквозь небольшое "окно", то есть голограмму. Следовательно, голограмма – это равномерно светящаяся поверхность, на которой мы не замечаем ничего достойного внимания.

Дифракционная решетка (голограмма) позволяет нам наблюдать несколько простейших эффектов. Их можно продемонстрировать и с использованием голограмм иного типа. Проходя сквозь дифракционную решетку, пучок света расщепляется, формируются два новых пучка. С помощью пучков лазерного излучения можно освещать любую дифракционную решетку. При этом излучение должно отличаться цветом от использованного при ее записи. Угол изгиба пучка цвета зависит от того, какой цвет он имеет. Если он красный (самый длинноволновой), то такой пучок изгибается под большим углом, нежели пучок синего цвета, который имеет наименьшую длину волны.

Сквозь дифракционную решетку можно пропустить смесь всех цветов, то есть белый. В этом случае каждая цветовая компонента этой голограммы искривляется под своим собственным углом. На выходе формируется спектр, аналогичный создаваемому призмой.

Размещение штрихов дифракционной решетки

Штрихи дифракционной решетки следует делать очень близкими друг к другу, чтобы было заметно искривление лучей. К примеру, для искривления красного луча на 20° нужно, чтобы расстояние между штрихами не превышало 0,002 мм. Если их разместить более тесно, луч света начинает изгибаться еще сильнее. Для "записи" данной решетки нужна фотопластинка, которая способна регистрировать настолько тонкие детали. Кроме того, необходимо, чтобы пластинка в процессе экспозиции, а также при регистрации оставалась совершенно неподвижной.

Картина может значительно смазаться даже при малейшем движении, причем настолько, что будет вовсе неразличимой. В этом случае мы увидим не интерференционную картину, а просто стеклянную пластинку, по всей своей поверхности однородно черную или серую. Конечно, в этом случае не будут воспроизводиться эффекты дифракции, формируемые дифракционной решеткой.

Пропускающие и отражательные голограммы

Рассмотренная нами дифракционная решетка именуется пропускающей, поскольку она действует в свете, проходящем сквозь нее. Если же нанести линии решетки не на прозрачную пластинку, а на поверхность зеркала, мы получим дифракционную решетку отражательную. Она отражает под разными углами свет различных цветов. Соответственно, есть два больших класса голограмм – отражательные и пропускающие. Первые наблюдаются в отраженном свете, а вторые – в проходящем.

Комментарии