Что собой представляют сетевые топологии? Зачем они необходимы? Где их используют и с какой целью? Какие их типы и виды существуют? Можно ли каким-то образом нивелировать негативные стороны сетевых топологий и усилить позитивные? Вот краткий перечень вопросов, на которые будет дан ответ в рамках данной статьи.
Общая информация
Много кто знает про сетевые устройства. Топологии же для большинства – это темный лес. Итак, давайте представим небольшую модель. У нас есть компьютеры, что функционируют в рамках одной
локальной сети. Они соединены посредством линий связи. В зависимости от того, как построено их взаимодействие, различают следующие виды сети:
- Кольцевую.
- Звездную.
- Шинную.
- Иерархическую.
- Произвольную.
Всё вышеперечисленное относится к физической топологии. Но существуют ещё и логические. Они являются независимыми одна от второй. Так, под первой подразумевают геометрию построения сети. Логическая топология занимается тем, что направляет потоки данных между разными узлам сети и выбирает способ передачи данных. Каждый из рассмотренных ниже типов построения взаимосвязи имеет свои особенности, преимущества и недостатки. А сейчас давайте рассмотрим основные сетевые топологии.
Шинная типология
Её применяют в тех случаях, когда для передачи данных используется линеечный моноканал. На его концах устанавливают терминаторы. Затем каждый компьютер подключают к линейному моноканалу благодаря Т-разъему. Данные передаются по обе стороны и отражаются от оконечных терминаторов. Как можно из этого понять, информация в данном случае поступает на все имеющиеся узлы. Но вот принята она может быть только тем, для которого и предназначена. Среда передачи данных в этом случае используется всеми персональными компьютерами, которые подключены к сети. А сигнал, что идёт от одного ПК, распространяется по всем устройствам. Популярность данная технология сыскала при использовании архитектуры Ethernet. Какие же преимущества нам предоставляет данное сетевое оборудование
(топология сетей)? Для начала необходимо отметить лёгкость в настройке и конфигурации сети. Также, если из строя выйдет один узел, то она сможет продолжать свою работу в целом. Благодаря этому можно сказать, что сети, построенные по шинной типологии, обладают значительной устойчивость к неисправностям. Но есть и недостатки. В первую очередь необходимо отметить ограничения относительно длины кабеля, а также количества рабочих станций. К тому же разрыв линейного моноканала негативно сказывается на работоспособности всей сети. Вследствие этого часто бывает трудно определить место дефекта, особенно если оно сокрыто изоляцией.
Сетевая топология «Звезда»
В этом случае витой парой каждая рабочая станция подсоединена к хабу или концентратору. Благодаря им обеспечивается параллельное соединение всех персональных компьютером. Посредством хаба или концентратора ПК и общаются между собой. Отсылаемые данные поступают на все рабочие станции. Но принять их может только та, для которой они и предназначались. Относительно преимуществ стоит отметить, что к сети легко подключить новый персональный компьютер. Также она устойчива к неисправностям отдельных узлов и разрывам соединения. И дополняет всё это возможность осуществления централизованного управления. Правда, есть и определённые минусы. Так, отмечается значительный расход кабеля. Кроме этого, отказ хаба или концентратора негативно повлияет на работу всей сети.
Использование центрального концентратора
Эта сетевая типология базируется на предыдущем виде создания сети. Главную роль в этом случае играет центральный концентратор. Он является интеллектуальным устройством, что обеспечивает
последовательное соединение разных станций по принципу «выход-вход», то есть благодаря ему каждая ЭВМ соединена с ещё двумя рабочими станциями. Для стабильности функционирования здесь имеются основные и резервные кольца. Благодаря этому можно поддерживать работоспособность сети даже при наличии существенных повреждений. Проблемная точка просто отключается. Для передачи данных используется специальный маркер. В нём содержится адрес отправителя и получателя информации. Следует отметить, что, кроме высокой надёжности, данная типология также обеспечивает и равный доступ к сети всем рабочим станциям. Но за всё приходится платить. В данном случае это относится к большому расходу кабеля и дорогостоящей разводке линий связи.
Дерево
Данная сетевая типология рассматривается как комбинация нескольких звезд. Дерево может быть в следующих состояниях:
- Активном.
- Пассивном.
- Истинном.
Зависимо от необходимо состояния ответственный персонал выбирает, что необходимо использовать: центральные компьютеры или хабы (концентраторы). Каждый выбор имеет свои преимущества и недостатки. В первом случае можно говорить о построении более централизованной системы с лучшей управляемостью и тому подобное. Но использование хабов или концентраторов, как правило, значительно более выгодно с ресурсо-финансовом плане.
Кольцевая топология
В данном случае предусматривается соединение
каналов связи в одну неразрывную цепь. При этом она не обязательно должна напоминать окружность. В этом случае предусматривается, что для передачи данных будет использоваться выход одного персонального компьютера, который соединён с входом иной ЭВМ. Поэтому, когда информация будет начинать движение из какой-то одной определённой точки, в конечном итоге она будет там же, пройдя один круг. Данные в таких кольцах всегда перемещаются в одном направлении. Распознать и обработать полученное сообщение может только та рабочая станция, которой оно было адресовано. При работе топологии применяется маркерный доступ. Он предусматривает предоставление права использования кольца в установленном порядке. Во время передачи данных используется логическое кольцо. Создать и настроить данную сеть весьма легко. Но из-за того, что повреждение в одном месте может вывести её из строя, в чистом виде она почти не применяется из-за своей ненадежности. Для работы на практике могут использоваться различные модификации данной типологии.
Комбинации
Они используются для того, чтобы уменьшить или ликвидировать негативные стороны при создании взаимосвязи между разными компьютерами. Наиболее распространённые комбинированные типы сетевой топологии строятся на звездной, шинной и кольцевой технологиях. Для понимания ситуации можно привести несколько примеров. Возьмём для первого звездно-шинную топологию. Главным в ней является концентратор. Но к нему могут подключаться не только отдельные компьютеры, но и целые шинные сегменты сети. Конечно, применяться может не один концентратор, а много. Также может использоваться архитектура построения с опорной (магистральной) шиной. Преимущество данной комбинации заключается в том, что системный администратор может получить преимущества обоих типологий и легко влиять на количество ЭВМ, что подключены к сети. Давайте рассмотрим ещё один пример. Рассматриваться будет звездно-кольцевая топология. По ней объединяют не компьютеры, а концентраторы, к которым непосредственно и подключены ЭВМ. Таким образом, создаётся замкнутый контур, в котором скомбинированы преимущества этих обеих топологий, а также появляется ещё ряд удобств. В качестве примера таковых можно привести то, что все концентраторы можно собрать в одном месте. А это значит, что точки подключения кабелей будут находиться вместе, и работа с ними будет существенно упрощена.
Заключение
Вот нами и были рассмотрены основные виды сетевой топологии. Представленные в рамках статьи возможности построения взаимосвязи между разными компьютерами являются самыми популярными благодаря своей практичности. Но в отдельных случаях могут понадобиться более специализированные сетевые топологии. Их разработка или использование уже созданных технологий осуществляется с учетом всех необходимых для корректной работы особенностей, нюансов и аспектов. Обычно нечто подобное используется только для научных и военных объектов, тогда как для гражданской жизни с лихвой хватает и наиболее распространённых подходов. Ведь рассмотренные сетевые топологии - это наработки десятилетий!