Колебательный контур - это... Принцип действия

Колебательный контур - это устройство, предназначенное для генерации (создания) электромагнитных колебаний. С момента его создания и по сегодняшний день он используется во многих областях науки и техники: от повседневной жизни до огромных заводов, производящих самую разную продукцию.

Из чего он состоит?

Колебательный контур состоит из катушки и конденсатора. Кроме того, в нём также может присутствовать резистор (элемент с переменным сопротивлением). Катушка индуктивности (или соленоид, как её иногда называют) представляет собой стержень, на который наматываются несколько слоёв обмотки, которая, как правило, представляет собой медную проволоку. Именно этот элемент создаёт колебания в колебательном контуре. Стержень, находящийся в середине, часто называют дросселем, или сердечником, а катушку иногда именуют соленоидом.

Катушка колебательного контура создаёт колебания только при наличии запасённого заряда. При прохождении через неё тока она накапливает заряд, который затем отдаёт в цепь, если напряжение падает.

Провода катушки обычно имеют очень маленькое сопротивление, которое всегда остаётся постоянным. В цепи колебательного контура очень часто происходит изменение напряжения и силы тока. Это изменение подчиняется определённым математическим законам:

  • U = U0*cos(w*(t-t0) , где
    U - напряжение в данный момент времени t,
    U0 - напряжение во время t0,
    w - частота электромагнитных колебаний.

Другим неотъемлемым компонентом контура является электрический конденсатор. Это элемент, состоящий из двух обкладок, которые разделены между собой диэлектриком. При этом толщина слоя между обкладками меньше их размеров. Такая конструкция позволяет накапливать на диэлектрике электрический заряд, который потом можно отдать в цепь.

Отличие конденсатора от аккумулятора в том, что в нём не происходит превращения веществ под действием электрического тока, а происходит непосредственное накопление заряда в электрическом поле. Таким образом, с помощью конденсатора можно накопить достаточно большой заряд, отдавать который можно весь сразу. При этом сила тока в цепи сильно возрастает.

Также колебательный контур состоит из ещё одного элемента: резистора. Этот элемент обладает сопротивлением и предназначен для контролирования силы тока и напряжения в цепи. Если при постоянном напряжении увеличивать сопротивление резистора, то сила тока будет уменьшаться по закону Ома:

  • I = U/R , где
    I - сила тока,
    U - напряжение,
    R - сопротивление.

Катушка индуктивности

Давайте подробнее рассмотрим все тонкости работы катушки индуктивности и лучше поймём её функцию в колебательном контуре. Как мы уже говорили, сопротивление этого элемента стремится к нулю. Таким образом, при подключении к цепи постоянного тока произошло бы короткое замыкание. Однако если подключать катушку в цепь переменного тока, она работает исправно. Это позволяет сделать вывод о том, что элемент оказывает сопротивление переменному току.

Но почему это происходит и как возникает сопротивление при переменном токе? Для ответа на этот вопрос нам нужно обратиться к такому явлению, как самоиндукция. При прохождении тока по катушке в ней возникает электродвижущая сила (ЭДС), которая создаёт препятствие изменению тока. Величина этой силы зависит от двух факторов: индуктивности катушки и производной силы тока по времени. Математически эта зависимость выражается через уравнение:

  • E = -L*I'(t) , где
    E - значение ЭДС,
    L - величина индуктивности катушки (для каждой катушки она разная и зависит от количества мотков обмотки и их толщины),
    I'(t) - производная силы тока по времени (скорость изменения силы тока).

Сила постоянного тока со временем не изменяется, поэтому сопротивления при его воздействии не возникает.

Но при переменном токе все его параметры постоянно изменяются по синусоидальному или косинусоидальному закону, вследствие чего возникает ЭДС, препятствующая этим изменениям. Такое сопротивление называют индукционным и вычисляют по формуле:

  • XL = w*L, где
    w - частота колебаний контура,
    L - индуктивность катушки.

Сила тока в соленоиде линейно нарастает и убывает по различным законам. Это значит, что если прекратить подачу тока в катушку, она будет продолжать некоторое время отдавать заряд в цепь. А если при этом резко прервать подачу тока, то будет происходить удар из-за того, что заряд будет пытаться распределиться и выйти из катушки. Это - серьёзная проблема в промышленном производстве. Такой эффект (хотя и не совсем связанный с колебательным контуром) можно наблюдать, например, при вытаскивании вилки из розетки. При этом проскакивает искра, которая в таких масштабах не в силах нанести вред человеку. Она обусловлена тем, что магнитное поле не исчезает сразу, а постепенно рассеивается, индуцируя токи в других проводниках. В промышленных масштабах сила тока во много раз больше привычных нам 220 вольт, поэтому при прерывании цепи на производстве могут возникнуть искры такой силы, что причинят немало вреда как заводу, так и человеку.

Катушка - это основа того, из чего колебательный контур состоит. Индуктивности последовательно включённых соленоидов складываются. Далее мы подробнее рассмотрим все тонкости строения этого элемента.

Что такое индуктивность?

Индуктивность катушки колебательного контура - это индивидуальный показатель, численно равный электродвижущей силе (в вольтах), которая возникает в цепи при изменении силы тока на 1 А за 1 секунду. Если соленоид подключён к цепи постоянного тока, то её индуктивность описывает энергию магнитного поля, которое создаётся этим током по формуле:

  • W=(L*I2)/2, где
    W - энергия магнитного поля.

Коэффициент индуктивности зависит от многих факторов: от геометрии соленоида, от магнитных характеристик сердечника и от количества мотков проволоки. Ещё одно свойство этого показателя в том, что он всегда положителен, потому что переменные, от которых она зависит, не могут быть отрицательными.

Индуктивность также можно определить как свойство проводника с током накапливать энергию в магнитном поле. Она измеряется в Генри (названа в честь американского учёного Джозефа Генри).

Кроме соленоида колебательный контур состоит из конденсатора, о котором пойдёт речь далее.

Электрический конденсатор

Ёмкость колебательного контура определяется ёмкостью электрического конденсатора. О его внешнем виде было написано выше. Теперь разберём физику процессов, которые протекают в нём.

Так как обкладки конденсатора сделаны из проводника, то по ним может течь электрический ток. Однако между двумя пластинами есть препятствие: диэлектрик (им может быть воздух, дерево или другой материал с высоким сопротивлением. Благодаря тому что заряд не может перейти от одного конца провода к другому, происходит накопление его на обкладках конденсатора. Тем самым возрастает мощность магнитного и электрического полей вокруг него. Таким образом, при прекращении поступления заряда вся электроэнергия, скопившаяся на обкладках, начинает передаваться в цепь.

Каждый конденсатор имеет номинальное напряжение, оптимальное для его работы. Если долго эксплуатировать этот элемент при напряжении выше номинального, срок его службы значительно сокращается. Конденсатор колебательного контура постоянно подвержен влиянию токов, и поэтому при его выборе следует быть предельно внимательным.

Кроме обычных конденсаторов, о которых шла речь, есть также ионисторы. Это более сложный элемент: его можно описать как нечто среднее между аккумулятором и конденсатором. Как правило, диэлектриком в ионисторе служат органические вещества, между которыми находится электролит. Вместе они создают двойной электрический слой, который и позволяет накапливать в этой конструкции в разы больше энергии, чем в традиционном конденсаторе.

Что такое ёмкость конденсатора?

Ёмкость конденсатора представляет собой отношение заряда конденсатора к напряжению, под которым он находится. Посчитать эту величину можно очень просто с помощью математической формулы:

Зависимость ёмкости конденсатора от расстояния между обкладками объясняется явлением электростатической индукции: чем меньше расстояние между пластинами, тем сильнее они влияют друг на друга (по закону Кулона), тем больше заряд обкладок и меньше напряжение. А при уменьшении напряжения увеличивается значение ёмкости, так как её также можно описать следующей формулой:

  • C = q/U, где
    q - заряд в кулонах.

Стоит поговорить о единицах измерения этой величины. Ёмкость измеряется в фарадах. 1 фарад - достаточно большая величина, поэтому существующие конденсаторы (но не ионисторы) имеют ёмкость, измеряемую в пикофарадах (одна триллионная фарада).

Резистор

Ток в колебательном контуре зависит также от сопротивления цепи. И кроме описанных двух элементов, из которых состоит колебательный контур (катушки, конденсатора), имеется ещё и третий - резистор. Он отвечает за создание сопротивления. Резистор отличается от других элементов тем, что имеет большое сопротивление, которое в некоторых моделях можно изменять. В колебательном контуре он выполняет функцию регулятора мощности магнитного поля. Можно соединить несколько резисторов последовательно или параллельно, тем самым увеличив сопротивление цепи.

Сопротивление этого элемента зависит также от температуры, поэтому следует быть внимательным к его работе в цепи, так как при прохождении тока он нагревается.

Сопротивление резистора измеряется в Омах, а его значение можно вычислить по формуле:

  • R = (p*l)/S, где
    p - удельное сопротивление материала резистора (измеряется в (Ом*мм2)/м);
    l - длина резистора (в метрах);
    S - площадь сечения (в квадратных миллиметрах).

Как связать параметры контура?

Теперь мы вплотную подошли к физике работы колебательного контура. Со временем заряд на обкладках конденсатора изменяется согласно дифференциальному уравнению второго порядка.

Если решить это уравнение, из него следует несколько интересных формул, описывающих процессы, протекающие в контуре. Например, циклическую частоту можно выразить через ёмкость и индуктивность.

Однако наиболее простая формула, которая позволяет вычислить многие неизвестные величины, - формула Томсона (названа в честь английского физика Уильяма Томсона, который вывел её в 1853 году):

  • T = 2*п*(L*C)1/2.
    T - период электромагнитных колебаний,
    L и C - соответственно, индуктивность катушки колебательного контура и ёмкость элементов контура,
    п - число пи.

Добротность

Есть ещё одна важная величина, характеризующая работу контура, - добротность. Для того чтобы понять, что это такое, следует обратиться к такому процессу, как резонанс. Это явление, при котором амплитуда становится максимальной при неизменной величине силы, которая это колебание поддерживает. Объяснить резонанс можно на простом примере: если вы начнёте подталкивать качели в такт их частоте, то они будут ускоряться, а их "амплитуда" будет возрастать. А если будете толкать не в такт, то они будут замедляться. При резонансе очень часто рассеивается много энергии. Для того чтобы можно было вычислить величины потерь, придумали такой параметр, как добротность. Она представляет собой коэффициент, равный отношению энергии, находящейся в системе, к потерям, происходящим в цепи за один цикл.

Добротность контура вычисляется по формуле:

  • Q = (w0*W)/P, где
    w0 - резонансная циклическая частота колебаний;
    W - энергия, запасённая в колебательной системе;
    P - рассеиваемая мощность.

Этот параметр - безразмерная величина, так как фактически показывает отношение энергий: запасённой к потраченной.

Что такое идеальный колебательный контур

Для лучшего понимания процессов в этой системе физики придумали так называемый идеальный колебательный контур. Это математическая модель, представляющая цепь как систему с нулевым сопротивлением. В ней возникают незатухающие гармонические колебания. Такая модель позволяет получить формулы приближённого вычисления параметров контура. Один из таких параметров - полная энергия:

  • W = (L*I2)/2.

Такие упрощения существенно ускоряют расчёты и позволяют оценить характеристики цепи с заданными показателями.

Как это работает?

Весь цикл работы колебательного контура можно разделить на две части. Сейчас мы подробно разберём процессы, происходящие в каждой части.

  • Первая фаза: пластина конденсатора, заряженная положительно, начинает разряжаться, отдавая ток в цепь. В этот момент ток идёт от положительного заряда к отрицательному, проходя при этом через катушку. Вследствие этого в контуре возникают электромагнитные колебания. Ток, пройдя через катушку, переходит на вторую пластину и заряжает её положительно (тогда как первая обкладка, с которой шёл ток, заряжается отрицательно).
  • Вторая фаза: происходит прямо обратный процесс. Ток переходит с положительной пластины (которая в самом начале была отрицательной) на отрицательную, проходя опять через катушку. И все заряды встают на свои места.

Цикл повторяется до тех пор, пока на конденсаторе будет заряд. В идеальном колебательном контуре этот процесс происходит бесконечно, а в реальном неизбежны потери энергии из-за различных факторов: нагрева, который происходит из-за существования сопротивления в цепи (джоулевое тепло), и тому подобное.

Варианты конструкции контура

Кроме простых цепей «катушка-конденсатор» и «катушка-резистор-конденсатор», существуют и другие варианты, использующие в качестве основы колебательный контур. Это, например, параллельный контур, который отличается тем, что существует как элемент электрической цепи (потому как, существуй он отдельно, то являлся бы последовательной цепью, о которой и шла речь в статье).

Также существуют и другие виды конструкции, включающие разные электротехнические компоненты. Например, можно подключать в сеть транзистор, который будет размыкать и замыкать цепь с частотой, равной частотой колебаний в контуре. Таким образом, в системе установятся незатухающие колебания.

Где применяется колебательный контур?

Самое знакомое нам применение составляющих контура - это электромагниты. Они, в свою очередь, используются в домофонах, электродвигателях, датчиках и во многих других не столь обыденных областях. Другое применение - генератор колебаний. На самом деле это использование контура нам очень знакомо: в этом виде он применяется в микроволновке для создания волн и в мобильной и радиосвязи для передачи информации на расстояние. Всё это происходит благодаря тому, что колебания электромагнитных волн можно закодировать таким образом, что станет возможным передавать информацию на большие расстояния.

Катушка индуктивности сама по себе может использоваться как элемент трасформатора: две катушки с разным числом обмоток могут передавать с помощью электромагнитного поля свой заряд. Но так как характеристики соленоидов различаются, то и показатели тока в двух цепях, к которым подключены эти две индуктивности, будут различаться. Таким образом, можно преобразовывать ток с напряжением, скажем, в 220 вольт в ток с напряжением в 12 вольт.

Заключение

Мы подробно разобрали принцип работы колебательного контура и каждой его части в отдельности. Мы узнали, что колебательный контур - это устройство, предназначенное для создания электромагнитных волн. Однако это только основы сложной механики этих, с виду простых, элементов. Узнать больше о тонкостях работы контура и его составляющих можно из специализированной литературы.

Комментарии
Как может заряд из положительно заряженной обкладки отдавать положительный заряд в цепь, если двигаться могут только электроны? Они (электроны) стремятся с одной обкладки на другую. И когда на одной из обкладок не станет электронов (когда они все перетекут на противоположную через цепь), то тогда первая становится положительно заряженной. Не потому, что положительный заряд течет, а потому, что электроны покинули обкладку и в обкладке остались только положительные.
Спасибо за доходчивое объяснение устройства и работы контура. Очень пригодилось!