Что такое бензол? Строение бензола, формула, свойства, применение
Среди огромного арсенала органических веществ можно выделить несколько соединений, открытие и изучение которых сопровождалось многолетними научными спорами. К ним по праву относится бензол. Строение бензола в химии было окончательно принято лишь к началу 20 столетия, тогда как элементный состав вещества определили еще в 1825 году, выделив его из каменноугольной смолы, которую получали как побочный продукт коксования угля.
Бензол вместе с толуолом, антраценом, фенолом, нафталином в настоящее время относят к ароматическим углеводородам. В нашей статье мы рассмотрим, каковы же особенности молекулы этого углеводорода, выясним физические свойства, например, такие как растворимость, температуру кипения и плотность бензола, а также обозначим области применения соединения в промышленности и сельском хозяйстве.
Что такое арены?
Химия органических соединений классифицирует все известные вещества на несколько групп, например, такие как алканы, алкины, спирты, альдегиды и т.д. Главной отличительной чертой каждого класса веществ является наличие определенных типов связей. Молекулы предельных углеводородов содержат только сигма-связь, вещества ряда этилена – двойную, у алкинов связь тройная. К какому же классу относится бензол?
Строение бензола указывает на присутствие в его молекуле ароматического кольца, названного бензольным ядром. Все соединения органической природы, содержащие одно или несколько таких колец в составе своих молекул, относят к классу аренов (ароматических углеводородов). Кроме бензола, который мы сейчас рассматриваем, в эту группу входит большое количество очень важных веществ, каких как толуол, анилин, фенол и другие.
Как решили проблему строения молекулы ароматического углеводорода
Вначале ученые установили качественный и количественный состав соединения, выразив его формулой С6Н6, согласно которой относительная молекулярная масса бензола равна 78. Затем было предложено несколько вариантов структурных формул, но ни одна из них не соответствовала реальным физическим и химическим свойствам бензола, наблюдаемым химиками в лабораторных опытах.
Прошло около сорока лет, прежде чем немецкий исследователь А. Кекуле представил свою версию структурной формулы, которую имеет молекула бензола. В ней присутствовали три двойных связи, указывающие на возможный непредельный характер химических свойств углеводорода. Это вступало в противоречие с действительно существующим характером взаимодействий соединения формулы С6Н6 с другими веществами, например, с бромом, нитратной кислотой, хлором.
Только после выяснения электронной конфигурации молекулы бензола в его структурной формуле появилось обозначение бензольного ядра (кольца), а сама она до сих пор используется в курсе органической химии.
Электронная конфигурация молекулы С6Н6
Какую же пространственную структуру имеет бензол? Строение бензола окончательно было подтверждено благодаря двум реакциям: тримеризации ацетилена с образованием бензола и его восстановления водородом до циклогексана. Оказалось, что атомы углерода, соединяясь между собой, образуют плоский шестиугольник и находятся в состоянии sp2-гибридизации, используя на связи с другими атомами три из четырех своих валентных электронов.
Оставшиеся шесть свободных p-электронов располагаются перпендикулярно плоскости молекулы. Перекрываясь между собой, они формируют общее электронное облако, названное бензольным ядром.
Природа полуторной химической связи
Хорошо известно, что физические и химические свойства соединений зависят, прежде всего, от их внутреннего строения и типов химических связей, возникающих между атомами. Рассмотрев электронную структуру бензола, можно прийти к выводу, что его молекула не имеет ни простых, ни двойных связей, которые можно увидеть в формуле Кекуле. Наоборот, между атомами углерода все химические связи равноценны. Более того, общее π-электронное облако (всех шести атомов С) образует химический тип связи, названный полуторной, или ароматической. Именно этот факт обуславливает специфические свойства бензольного кольца и, как следствие, характер химического взаимодействия ароматических углеводородов с другими веществами.
Физические свойства
Арены, содержащие в составе молекулы небольшое количество атомов углерода, представлены в основном жидкостями. Не является исключением и бензол. Строение бензола, как мы помним, указывает на его молекулярную природу. Как же этот факт отразился на его свойствах?
При понижении температуры жидкость переходит в твердую фазу, и бензол превращается в белую кристаллическую массу. Она легко плавится при температуре 5,5 °С. В обычных условиях вещество представляет собой бесцветную жидкость со своеобразным запахом. Его температура кипения составляет 80,1 °С.
Плотность бензола меняется в зависимости от изменения температуры. Чем температура выше, тем плотность меньше. Приведем несколько примеров. При температуре 10° плотность составляет 0,8884 г/мл, а при 20° - 0,8786 г/мл. Молекулы бензола неполярные, поэтому вещество нерастворимо в воде. Зато само соединение является хорошим органическим растворителем, например, для жиров.
Особенности химических свойств бензола
Экспериментально установлено, что ароматическое бензольное ядро устойчиво, т.е. характеризуется высокой стойкостью к разрыву. Этот факт служит объяснением склонности вещества к протеканию реакций по типу замещения, например, с хлором при обычных условиях, с бромом, с нитратной кислотой в присутствии катализатора. Нужно отметить высокую устойчивость бензола к действию окислителей, таких как перманганат калия и бромная вода. Это еще раз подтверждает факт отсутствия в молекуле арена двойных связей. Жесткое окисление, иначе называемое горением, характерно для всех ароматических углеводородов. Так как процентное содержание углерода в молекуле С6Н6 велико, горение бензола сопровождается коптящим пламенем с образованием частиц сажи. В результате реакции образуется углекислый газ и вода. Интересным представляется вопрос: может ли ароматический углеводород вступать в реакции присоединения? Рассмотрим его далее более подробно.
К чему приводит разрыв бензольного ядра?
Напомним, что в молекулах аренов присутствует полуторная связь, возникшая в результате перекрывания шести р-электронов атомов карбона. Она и лежит в основе бензольного ядра. Чтобы его разрушить и провести реакцию присоединения, необходим ряд специальных условий, например, таких как световое облучение, высокие температура и давление, катализаторы. Смесь бензола и хлора вступает в реакцию присоединения под действием ультрафиолетового излучения. Продуктом такого взаимодействия будет гексахлорциклогексан – токсическое кристаллическое вещество, применяемое в сельском хозяйстве в качестве инсектицида. В молекуле гексахлорана уже нет бензольного ядра, по месту его разрыва произошло присоединение шести атомов хлора.
Области практического применения бензола
В различных отраслях промышленности вещество широко используется как растворитель, а также как сырье для дальнейшего получения лаков, пластических масс, красителей, в качестве добавки к моторному топливу. Еще больший диапазон применения имеют производные бензола и его гомологи. Например, нитробензол С6Н5NO2 является основным реагентом для получения анилина. В результате реакции замещения с хлором в присутствии хлорида алюминия в качестве катализатора получают гексахлорбензол. Его применяют для предпосевной обработки семян, а также используют в деревообрабатывающей промышленности для защиты древесины от вредителей. Нитрованием гомолога бензола (толуола) получают взрывчатое вещество, известное как тротил или тол.
В данной статье мы рассмотрели такие свойства ароматического соединения, как реакции присоединения и замещения, горение бензола, а также определили области его применения в промышленности и сельском хозяйстве.