Великий математик Гаусс: биография, фото, открытия

Математик Гаусс был замкнутым человеком. Эрик Темпл Белл, который изучал его биографию, считает, что если бы Гаусс опубликовал все свои исследования и открытия в полном объеме и вовремя, то могло бы прославиться еще с полдюжины математиков. А так им пришлось потратить львиную долю времени, чтобы узнать, каким образом ученый получил те или другие данные. Ведь он редко публиковал методы, его всегда интересовал только результат. Выдающийся математик, странный человек и неподражаемая личность – это все Карл Фридрих Гаусс.

Ранние годы

Будущий математик Гаусс родился 30.04.1777 г. Это, конечно, странное явление, но выдающиеся люди чаще всего рождаются в бедных семьях. Так случилось и в этот раз. Его дедушка был обычным крестьянином, а отец работал в герцогстве Брауншвейг садовником, каменщиком или водопроводчиком. Родители узнали, что их ребенок вундеркинд, когда малышу исполнилось два года. Спустя год Карл уже умеет считать, писать и читать.

В школе его способности заметил учитель, когда дал задание подсчитать сумму чисел от 1 до 100. Гауссу быстро удалось понять, что все крайние числа в паре составляют 101, и за считанные секунды он решил это уравнение, умножив 101 на 50.

Юному математику несказанно повезло с учителем. Тот помогал ему во всем, даже похлопотал за то, чтобы начинающему дарованию выплачивали стипендию. С ее помощью Карл сумел окончить колледж (1795 год).

Студенческие годы

После колледжа Гаусс учится в Геттингенском университете. Этот период жизни биографы обозначают как самый плодотворный. В это время ему удалось доказать, что начертить правильный семнадцатиугольник, используя лишь циркуль, представляется возможным. Он уверяет: можно нарисовать не только семнадцатиугольник, но и другие правильные многоугольники, пользуясь только циркулем и линейкой.

В университете Гаусс начинает вести специальную тетрадь, куда заносит все записи, которые касаются его исследований. Большинство из них были скрыты от глаз общественности. Для друзей он всегда повторял, что не сможет опубликовать исследование или формулу, в которых не уверен на 100%. По этой причине большинство из его идей были открыты другими математиками спустя 30 лет.

«Арифметические исследования»

Вместе с окончанием университета математик Гаусс закончил свой выдающийся труд «Арифметические исследования» (1798), но его напечатали лишь спустя два года.

Это обширное сочинение определило дальнейшее развитие математики (в частности, алгебры и высшей арифметики). Основная часть работы сосредоточена на описании абиогенеза квадратичных форм. Биографы уверяют, что именно с него начинаются открытия Гаусса в математике. Ведь он был первым математиком, у кого получилось вычислять дроби и переводить их в функции.

Также в книге можно отыскать полную парадигму равенств деления круга. Гаусс умело применяет эту теорию, пытаясь решить проблему начертания многоугольников при помощи линейки и циркуля. Доказывая эту вероятность, Карл Гаусс (математик) вводит ряд чисел, которые называют числами Гаусса (3, 5, 17, 257, 65337). Это значит, что при помощи простых канцелярских предметов можно построить 3-угольник, 5-угольник, 17-угольник и т.д. А вот 7-угольник построить не получится, ведь 7 не является «числом Гаусса». К «своим» числа математик также относит двойки, что умноженные на любую степень его ряда чисел (23, 25 и т.д.)

Этот результат можно назвать «чистой теоремой существования». Как уже было сказано вначале, Гаусс любил публиковать итоговые результаты, но никогда не указывал методы. Так же и в этом случае: математик утверждает, что построить правильный многоугольник вполне реально, вот только не уточняет, как именно это сделать.

Астрономия и царица наук

в 1799 году Карл Гаусс (математик) получает титул приват-доцента Брауншвейнского университета. Спустя два года ему предоставляют место в Петербургской Академии наук, где он выступает в качестве корреспондента. Он все еще продолжает изучать теорию чисел, но круг его интересов расширяется после открытия небольшой планеты. Гаусс пытается вычислить и указать ее точное местонахождение. Многие задаются вопросом, как называлась планета по вычислениям математика Гаусса. Однако немногим известно, что Церера - не единственная планета, с которой работал ученый.

В 1801 году впервые было обнаружено новое небесное тело. Это случилось неожиданно и внезапно, точно так же неожиданно планета была утеряна. Гаусс попытался обнаружить ее, применяя математические методы, и, как ни странно, она была именно там, куда указал ученный.

Астрономией ученый занимается более двух десятилетий. Всемирную известность получает метод Гаусса (математика, которому принадлежит множество открытий) для определения орбиты с помощью трех наблюдений. Три наблюдения – это место, в котором располагается планета в разный период времени. С помощью этих показателей была вновь найдена Церера. Точно таким же образом обнаружили еще одну планету. С 1802 года на вопрос, как называется планета, обнаруженная математиком Гаусса, можно было отвечать: "Паллада". Забегая немного вперед, стоит отметить, что в 1923 году именем известного математика назвали крупный астероид, вращающийся вокруг Марса. Гауссия, или астероид 1001, – это официально признанная планета математика Гаусса.

Это были первые исследования в области астрономии. Возможно, созерцание звездного неба стало причиной того, что человек, увлеченный числами, принимает решение обзавестись семьей. В 1805 году берет в жены Иоганну Остгоф. В этом союзе у пары рождается трое детей, но младший сын умирает в младенчестве.

В 1806 году скончался герцог, который покровительствовал математику. Страны Европы наперебой начинают приглашать Гаусса к себе. С 1807 года и до последних своих дней Гаусс возглавляет кафедру в Геттингенском университете.

В 1809 году умирает первая жена математика, в этом же году Гаусс издает свое новое творение - книгу под названием «Парадигма перемещения небесных тел». Методы для вычисления орбит планет, что изложены в этом труде, актуальны и сегодня (правда, с небольшими поправками).

Главная теорема алгебры

Начало ХІХ века Германия встретила в состоянии анархии и упадка. Эти годы были тяжелыми для математика, но он продолжает жить дальше. В 1810 году Гаусс второй раз связывает себя узами брака - с Минной Вальдек. В этом союзе у него появляется еще трое детей: Тереза, Вильгельм и Ойген. Также 1810 год был ознаменован получением престижной премии и золотой медали.

Гаусс продолжает свою работу в областях астрономии и математики, исследуя все больше и больше неизвестных составляющих этих наук. Его первая публикация, посвященная основной теореме алгебры, датируется 1815 годом. Главная идея заключается в следующем: число корней многочлена прямопропорциональна его степени. Позже высказывание приобрело несколько иной вид: любое число в степени, не равной нолю, априори имеет как минимум один корень.

Впервые он доказал это еще в 1799 году, но не был доволен своей работой, поэтому публикация вышла в свет спустя 16 лет, с некоторыми поправками, дополнениями и вычислениями.

Неевклидова теория

Согласно данным, в 1818 году Гауссу первому удалось построить базу для неевклидовой геометрии, теоремы которой были бы возможны в реальности. Неевклидовая геометрия представляет собой область науки, отличимой от евклидовой. Основная особенность евклидовой геометрии - в наличии аксиом и теорем, которые не требуют подтверждений. В своей книге «Начала» Евклид вывел утверждения, которые должны приниматься без доказательств, ведь они не могут быть изменены. Гаусс был первым, кому удалось доказать, что теории Евклида не всегда могут восприниматься без обоснований, так как в определенных случаях они не имеют прочной базы доказательств, которая удовлетворяет всем требованиям эксперимента. Так появилась неевклидова геометрия. Конечно, основные геометрические системы были открыты Лобачевским и Риманом, но метод Гаусса - математика, умеющего смотреть вглубь и находить истину, - положил начало этому разделу геометрии.

Геодезия

В 1818 году правительство Ганновера решает, что назрела необходимость измерить королевство, и это задание получил Карл Фридрих Гаусс. Открытия в математике на этом не закончились, а лишь приобрели новый оттенок. Он разрабатывает необходимые для выполнения задания вычислительные комбинации. В их число вошла гауссова методика «малых квадратов», которая подняла геодезию на новый уровень.

Ему пришлось составлять карты и организовывать съемку местности. Это позволило приобрести новые знания и поставить новые эксперименты, поэтому в 1821 году он начинает писать работу, посвященную геодезии. Этот труд Гаусса опубликовали в 1827, под названием «Общий анализ неровных плоскостей». В основу этой работы были положены засады внутренней геометрии. Математик считал, что необходимо рассматривать предметы, которые находятся на поверхности, как свойства самой поверхности, обращая внимание на длину кривых, игнорируя при этом данные объемлющего пространства. Несколько позже эта теория была дополнена трудами Б. Римана и А. Александрова.

Благодаря этому труду в научных кругах начало появляться понятие «гауссова кривизна» (определяет меру искривления плоскости в определенной точке). Начинает свое существование дифференциальная геометрия. И чтобы результаты наблюдений были достоверными, Карл Фридрих Гаусс (математик) выводит новые методы получения величин с высоким уровнем вероятности.

Механика

В 1824 году Гаусс был заочно включен в состав членов Петербургской Академии наук. На этом его достижения не заканчиваются, он все так же упорно занимается математикой и презентует новое открытие: «целые числа Гаусса». Под ними подразумевают числа, имеющие мнимую и вещественную часть, которые являются целыми числами. По сути, своими свойствами гауссовские числа напоминают обычные целые, но те небольшие отличительные характеристики позволяют доказать биквадратичный закон взаимности.

В любое время он был неподражаем. Гаусс - математик, открытия которого так тесно переплетены с жизнью, - в 1829 году внес новые коррективы даже в механику. В это время вышел его небольшой труд «О новом универсальном принципе механики». В нем Гаусс доказывает, что принцип малого воздействия, можно по праву считать новой парадигмой механики. Ученный уверяет, что этот принцип можно применять ко всем механическим системам, которые связаны между собой.

Физика

С 1831 года Гаусс начинает страдать от тяжелой бессонницы. Болезнь проявилась после смерти второй супруги. Он ищет утешения в новых исследованиях и знакомствах. Так, благодаря его приглашению в Геттинген приехал В. Вебер. С молодой талантливой личностью Гаусс быстро находит общий язык. Они оба увлечены наукой, и жажду знаний приходится унимать, обмениваясь своими наработками, догадками и опытом. Эти энтузиасты быстро принимаются за дело, посвящая свое время исследованию электромагнетизма.

Гаусс, математик, биография которого имеет большую научную ценность, в 1832 году создал абсолютные единицы, которыми и сегодня пользуются в физике. Он выделял три основные позиции: время, вес и расстояние (длина). Наряду с этим открытием в 1833 году, благодаря совместным исследованиям с физиком Вебером, Гауссу удалось изобрести электромагнитный телеграф.

1839 год ознаменован выходом еще одного сочинения - «Об общем абиогенезе сил тяготения и отталкивания, что действуют прямопропорционально расстоянию». На страницах подробно описан знаменитый закон Гаусса (еще известный как теорема Гаусса-Остроградского, или просто теорема Гаусса). Этот закон является одним из основных в электродинамике. Он определяет связь между электрическим потоком и суммой заряда поверхности, делимые на электрическую постоянную.

В этом же году Гаусс освоил русский язык. Он направляет письма в Петербург с просьбой выслать ему русские книги и журналы, особенно желал он ознакомиться с произведением «Капитанская дочка». Этот факт биографии доказывает, что, помимо способностей к вычислению, у Гаусса было множество других интересов и увлечений.

Просто человек

Гаусс никогда не спешил публиковаться. Он долго и кропотливо проверял каждую свою работу. Для математика все имело значение: начиная от правильности формулы и заканчивая изяществом и простотой слога. Он любил повторять, что его работы - как только что построенный дом. Владельцу показывают только конечный результат работы, а не остатки леса, которые раньше были на месте жилого помещения. Также и с его работами: Гаусс был уверен, что никому не стоит показывать черновые наброски исследования, только готовые данные, теории, формулы.

Гаусс всегда проявлял живой интерес к наукам, но особенно его интересовала математика, которую он считал «царицей всех наук». И природа не обделила его умом и талантами. Даже находясь в преклонном возрасте, он, по обычаю, проводил большую часть сложных вычислений в уме. Математик никогда заранее не распространялся о своих работах. Как и каждый человек, он боялся, что его не поймут современники. В одном из своих писем Карл говорит о том, что устал вечно балансировать на грани: с одной стороны, он с удовольствием поддержит науку, но, с другой, ему не хотелось ворошить «осиное гнездо непонятливых».

Всю свою жизнь Гаусс провел в Геттингене, только один раз ему удалось побывать в Берлине на научной конференции. Он мог длительное время проводить исследования, опыты, вычисления или измерения, но очень не любил читать лекции. Этот процесс он считал лишь досадной необходимостью, но если у него в группе появлялись талантливые ученики, он не жалел для них ни времени, ни сил и долгие годы поддерживал переписку обсуждая важные научные вопросы.

Карл Фридрих Гаусс, математик, фото, которого размещены в этой статье, был поистине удивительным человеком. Выдающимися знаниями мог похвастаться не только в области математики, но и с иностранными языками «дружил». Свободно разговаривал на латыни, английском и французском, освоил даже русский. Математик читал не только научные мемуары, но и обычную художественную литературу. Особенно ему нравились произведения Диккенса, Свифта и Вальтера Скотта. После того как его младшие сыновья эмигрировали в США, Гаусс начал интересоваться американскими писателями. Со временем пристрастился к датским, шведским, итальянским и испанским книгам. Все произведения математик непременно читал в оригинале.

Гаусс занимал весьма консервативную позицию в общественной жизни. С ранних лет он ощущал зависимость от людей, наделенных властью. Даже когда в 1837 году в университете начался протест против короля, который урезал профессорам содержание, Карл не стал вмешиваться.

Последние годы

В 1849 год Гаусс отмечает 50-летие присвоения докторской степени. К нему приехали известные математики, и это обрадовало его намного больше, чем присвоение очередной награды. В последние годы своей жизни уже много болел Карл Гаусс. Математику было сложно передвигаться, но ясность и острота разума от этого не пострадали.

Незадолго до смерти здоровье Гаусса ухудшилось. Врачи диагностировали болезнь сердца и нервное перенапряжение. Лекарства практически не помогали.

Математик Гаусс умер 23 февраля 1855 года, в возрасте семидесяти восьми лет. Известного ученого похоронили в Геттингене и, согласно его последней воле, выгравировали на надгробной плите правильный семнадцатиугольник. Позже его портреты напечатают на почтовых марках и денежных купюрах, страна навсегда запомнит своего лучшего мыслителя.

Таким был Карл Фридрих Гаусс – странным, умным и увлеченным. И если спросят, как называется планета математика Гаусса, можно не спеша ответить: «Вычисления!», ведь именно им он посвятил всю свою жизнь.

Комментарии