Действие с обыкновенными дробями. Совместные действия с обыкновенными и десятичными дробями
Дроби бывают обыкновенные и десятичные. Когда школьник узнает о существовании последних, он начинает при каждом удобном случае переводить все, что возможно, в десятичный вид, даже если этого не требуется.
Как ни странно, у старшеклассников и студентов предпочтения меняются, потому что проще выполнять многие арифметические действия с обыкновенными дробями. Да и значения, с которыми имеют дело выпускники, преобразовать в десятичный вид без потерь порой бывает попросту невозможно. В результате оба вида дробей оказываются, так или иначе, приспособлены к делу и обладают своими преимуществами и недостатками. Посмотрим, как с ними работать.
Определение
Дроби - это те же доли. Если в апельсине десять долек, а вам дали одну, то у вас в руке 1/10 часть фрукта. При такой записи, как в предыдущем предложении, дробь будет называться обыкновенной. Если написать то же самое как 0,1 - десятичной. Оба варианта являются равноправными, однако имеют свои преимущества. Первый вариант удобнее при умножении и делении, второй - при сложении, вычитании и в ряде других случаев.
Как перевести дробь в другой вид
Предположим, у вас есть обыкновенная дробь, и вы хотите сделать из неё десятичную. Что для этого нужно сделать?
Если из знаменателя путём умножения или деления на целое число можно получить значение, кратное 10, перевод пройдёт без каких-либо трудностей: ¾ превращается в 0,75, 13/20 – в 0,65.
Обратная процедура выполняется ещё проще, поскольку из десятичной дроби можно всегда получить обыкновенную без потерь в точности. Например, 0,2 становится 1/5, а 0,08 – 4/25.
Внутренние преобразования
Прежде чем осуществлять совместные действия с обыкновенными дробями, нужно подготовить числа к возможным математическим операциям.
Перво-наперво нужно привести все имеющиеся в примере дроби к одному общему виду. Они должны быть либо обыкновенными, либо десятичными. Сразу оговоримся, что умножение и деление удобнее выполнять с первыми.
Свойства дробей
Предположим, у вас есть некоторое значение. Скажем, 2/3. Что изменится, если вы умножите числитель и знаменатель на 3? Получится 6/9. А если на миллион? 2000000/3000000. Но постойте, ведь число качественно совершенно не меняется – 2/3 остаются равны 2000000/3000000. Меняется только форма, но не содержание. То же самое произойдёт при делении обеих частей на одно и то же значение. В этом и заключается основное свойство дроби, которое неоднократно поможет вам производить действия с десятичными и обыкновенными дробями на контрольных и экзаменах.
Неправильные дроби
Неправильной дробью называется такая, у которой числитель больше или равен знаменателю. Иными словами, если у неё можно выделить целую часть, она попадает под это определение.
Если такое число (большее либо равное единице) представлено в виде обыкновенной дроби, она будет называться неправильной. А если числитель меньше знаменателя – правильной. Оба вида одинаково удобны при осуществлении возможных действий с обыкновенными дробями. Их можно беспрепятственно умножать и делить, складывать и вычитать.
Если же одновременно выделена целая часть и при этом имеется остаток в виде дроби, полученное число будет называться смешанным. В будущем вы столкнетесь с различными способами комбинации таких структур с переменными, а также решением уравнений, где потребуются эти знания.
Арифметические операции
Если с основным свойством дроби всё ясно, то как вести себя при перемножении дробей? Действия с обыкновенными дробями в 5 классе подразумевают все виды арифметических операций, которые выполняются двумя различными способами.
Умножение и деление выполняются очень просто. В первом случае просто перемножаются числители и знаменатели двух дробей. Во втором – то же самое, только крест-накрест. Таким образом, числитель первой дроби умножается на знаменатель второй, и наоборот.
Сравнение
Если у двух дробей одинаковый знаменатель, то больше будет та из них, числитель которой больше. Если же одинаковы верхние части, то больше будет та, у которой меньше знаменатель. Стоит иметь в виду, что столь удачные ситуации для сравнения выпадают нечасто. Скорее всего, и верхние, и нижние части выражений совпадать не будут. Тогда понадобится вспомнить про возможные действия с обыкновенными дробями и использовать приём, применяемый при сложении и вычитании. Кроме того, помните, что если мы говорим об отрицательных числах, то большая по модулю дробь окажется меньшей.
Преимущества обыкновенных дробей
Случается, что преподаватели говорят детям одну фразу, содержание которой можно выразить так: чем больше информации дано при формулировке задания, тем проще будет решение. Кажется, что звучит странно? Но действительно: при большом количестве известных величин можно пользоваться практически любыми формулами, а вот если предоставлена лишь пара чисел, могут потребоваться дополнительные размышления, придётся вспоминать и доказывать теоремы, приводить аргументы в пользу своей правоты…
Когда требуется осуществить совместные действия с обыкновенными и десятичными дробями, трансформации осуществляются в пользу первых: как вы переведете 3/17 в десятичный вид? Только с потерями информации, не иначе. А вот 0,1 можно представить как 1/10, а далее – как 17/170. И тогда два получившихся числа можно складывать или вычитать: 30/170 + 17/170 = 47/170.
Чем полезны десятичные дроби
Если действия с обыкновенными дробями осуществлять и сподручнее, то записывать все с их помощью крайне неудобно, десятичные здесь имеют существенное преимущество. Сравните: 1748/10000 и 0,1748. Это одно и то же значение, представленное в двух различных вариантах. Разумеется, второй способ проще!
Кроме того, десятичные дроби проще представить, поскольку все данные имеют общее основание, различающееся исключительно на порядки. Скажем, скидку в 30% мы легко осознаем и даже оценим как значительную. А сразу ли вы поймете, что больше – 30% или 137/379? Таким образом, десятичные дроби обеспечивают стандартизацию расчётов.
Итак, каждый способ представления дробей имеет свои преимущества в соответствующем контексте.
Формы записи
Существует два способа записи действий с обыкновенными дробями: через горизонтальную черту, в два «яруса», и через наклонную черту (она же – «слэш») - в строку. Когда ученик пишет в тетради, первый вариант обычно удобнее, а потому и более распространен. Распределение рядом цифр по клеточкам способствует развитию внимательности при расчётах и проведении преобразований. При записи в строку можно по невнимательности перепутать порядок действий, потерять какие-либо данные – то есть, ошибиться.
Если же вы будете пользоваться стандартным текстовым редактором «Блокнот», то все дробные выражения нужно будет писать через наклонную черту. Другого способа здесь, к сожалению, не предусмотрено.
Заключение
Вот мы и рассмотрели все основные действия с обыкновенными дробями, которых, оказывается, не так уж и много.
Если поначалу может казаться, что это сложный раздел математики, то это только временное впечатление – помните, когда-то вы так думали про таблицу умножения, а ещё раньше – про обычные прописи и счёт от одного до десяти.
Важно понимать, что дроби используются в повседневной жизни повсюду. Вы будете иметь дело с деньгами и инженерными расчётами, информационными технологиями и музыкальной грамотой, и везде – везде! – дробные числа будут фигурировать. Поэтому не поленитесь и изучите эту тему хорошенько - тем более не такая уж она и сложная.