Средняя величина в статистике - это... Средние величины

Каждый человек в современном мире, планируя взять кредит или делая запасы овощей на зиму, периодически сталкивает с таким понятием, как «средняя величина». Давайте узнаем: что это такое, какие ее виды и классы существуют и зачем она применяется в статистике и других дисциплинах.

Средняя величина - это что такое?

Подобное название (СВ) носит обобщенная характеристика совокупности однородных явлений, определяемая по какому-либо одному количественному варьируемому признаку.

Однако люди далекие, от столь заумных определений, понимают это понятие, как среднее количество чего-то. Например, прежде чем взять кредит, сотрудник банка обязательно попросит потенциального клиента предоставить данные о среднем доходе за год, то есть общую сумму зарабатываемых человеком средств. Она вычисляется путем суммирования заработанного за весь год и разделения на количество месяцев. Таким образом, банк сможет определить, сумеет ли его клиент отдать долг в срок.

Зачем она используется?

Как правило, средние величины широко применяются для того, чтобы дать итоговую характеристику определенных общественных явлений, носящих массовый характер. Также они могут быть использованы для менее масштабных расчетов, как в случае с кредитом, в приведенном выше примере.

Однако чаще всего средние величины все же применяются для глобальных целей. В качестве примера одного из них можно привести вычисление количества потребляемой гражданами электроэнергии на протяжении одного календарного месяца. На основе полученных данных в дальнейшем устанавливаются максимальные нормы для категорий населения, пользующихся льготами от государства.

Также с помощью средних величин разрабатывается гарантийный срок службы тех или иных бытовых приборов, автомобилей, зданий и т. п. На основе собранных таким способом данных когда-то были разработаны современные нормы труда и отдыха.

Фактически любое явление современной жизни, носящее массовый характер, тем или иным образом обязательно связано с рассматриваемым понятием.

Сферы применения

Данное явление широко применяется практически во всех точных науках, особенно носящих экспериментальный характер.

Поиск среднего значения величины имеет огромное значение в медицине, инженерных дисциплинах, кулинарии, экономике, политике и т. п.

Основываясь на данных, полученных от подобных обобщений, разрабатывают лечебные препараты, учебные программы, устанавливают минимальные прожиточные минимумы и зарплаты, строят учебные графики, производят мебель, одежду и обувь, предметы гигиены и многое другое.

В математике данный термин именуется «средним значением» и применяется для осуществления решений различных примеров и задач. Наиболее простыми из них являются сложение и вычитание с обычными дробями. Ведь, как известно, для решения подобных примеров необходимо привести обе дроби к общему знаменателю.

Также в царице точных наук часто применяется близкий по смыслу термин «значение среднее случайной величины». Большинству он более знаком как «математическое ожидание», чаще рассматриваемое в теории вероятности. Стоит отметить, что подобное явление также применяется и при произведении статистических вычислений.

Средняя величина в статистике

Однако чаще всего изучаемое понятие используется в статистике. Как известно, эта наука сама по себе специализируется на вычислении и анализе количественной характеристики массовых общественных явлений. Поэтому средняя величина в статистике используется в качестве специализированного метода достижения ее основных задач - сбора и анализа информации.

Суть данного статистического метода заключается в замене индивидуальных уникальных значений рассматриваемого признака определенной уравновешенной средней величиной.

В качестве примера можно привести знаменитую шутку о еде. Итак, на неком заводе по вторникам на обед его начальство обычно ест мясную запеканку, а простые рабочие – тушеную капусту. На основе этих данных можно сделать вывод, что в среднем коллектив завода по вторникам обедает голубцами.

Хотя данный пример слегка утрирован, однако он иллюстрирует главный недостаток метода поиска средней величины – нивелирование индивидуальных особенностей предметов или личностей.

В статистике, данные средних величин применяются не только для анализа собранной информации, но и для планирования и прогнозирования дальнейших действий.

Также с его помощью производится оценка достигнутых результатов (например, выполнение плана по выращиванию и сбору урожая пшеницы за весенне-летний сезон).

Как правильно рассчитать

Хотя в зависимости от вида СВ существуют разные формулы ее вычисления, в общей теории статистики, как правило, применяется всего один способ расчета средней величины признака. Для этого нужно сначала сложить вместе значения всех явлений, а затем разделить получившуюся сумму на их количество.

При произведении подобных вычислений стоит помнить, что средняя величина всегда имеет ту же размерность (или единицы измерения), что и отдельная единица совокупности.

Условия правильного вычисления

Рассмотренная выше формула весьма проста и универсальна, так что ошибиться в ней практически невозможно. Однако всегда стоит учитывать два аспекта, иначе полученные данные не будут отражать реальную ситуацию.

  • Искомые индивидуальные значения (на основе которых вычисляются средние) всегда должны относиться к однородной совокупности, а количество их должно быть значительным.

    В вышеупомянутой шутке мясная запеканка и капуста – относятся к одной категории – «еда». Однако если бы нужно было узнать, сколько килограмм капусты хранится в столовой завода, учитывать данные о мясе не было бы смысла, так как в данном случае они не относились бы к рассматриваемой однородной совокупности.


  • В любом индивидуальном случае важно брать во внимание качественное содержания признака, среднюю величину которого необходимо рассчитать. При этом важно обращать внимание на взаимосвязь между изучаемыми признаками и имеющиеся для вычислений данные.

Классы СВ

Найдя ответы на основные вопросы: "Средняя величина - это что такое?", "Где применяется она?" и "Как можно вычислить ее?", стоит узнать, какие классы и виды СВ существуют.

Прежде всего это явление делится на 2 класса. Это структурные и степенные средние величины.

Виды степенных СВ

Каждый из вышеперечисленных классов, в свою очередь, делится на виды. У степенного класса их четыре.

  • Средняя арифметическая величина – это наиболее распространенный вид СВ. Она являет собою среднее слагаемое, при определении коего общий объем рассматриваемого признака в совокупности данных поровну распределяется между всеми единицами данной совокупности.

    Этот вид делится на подвиды: простая и взвешенная арифметическая СВ.

  • Средняя гармоническая величина – это показатель, обратный средней арифметической простой, вычисляемый из обратных значений рассматриваемого признака.

    Она применяется в тех случаях, когда известны индивидуальные значения признака и произведение, а данные частоты - нет.

  • Средняя геометрическая величина чаще всего применима при анализе темпов роста экономических явлений. Она дает возможность сохранять в неизменном виде произведение индивидуальных значений данной величины, а не сумму.

    Также бывает простой и взвешенной.

  • Средняя квадратическая величина используется при расчете отдельных показателе показателей, таких как коэффициент вариации, характеризующего ритмичность выпуска продукции и т. п.

    Также с ее помощью вычисляются средние диаметры труб, колес, средние стороны квадрата и подобных фигур.

    Как и все остальные виды средних СВ, среднеквадратическая бывает простой и взвешенной.

Виды структурных величин

Помимо средних СВ, в статистике довольно часто используются структурные виды. Они лучше подходят для расчета относительных характеристик величин варьирующего признака и внутреннего строения рядов распределения.

Таких видов существует два.

  • Мода. Данный вид чаще всего используется для определения наиболее популярных у покупателей размеров одежды и обуви.

    Как правило, мода вычисляется по такой формуле.

    В ней М0 – является значением моды, х0 – нижней границей интервала модального, h – величиной рассматриваемого интервала, fm – его частотой, fm-1 – частотой предшествующего модальному интервалу и fm+1 – частотой следующего.

  • Медианой именуется значение признака, лежащее в основе ранжированного ряда и делящее его на две части, равные между собою по численному показателю.

    В формулах, данный вид обозначается, как Ме.

    В зависимости от того в каком ряду определяется данный вид структурной СВ (дискретный или интервальный вариационный), применяются различные формулы его вычисления.

Комментарии