Солнечный парус: конфигурации, принцип работы. Космические путешествия
Солнечный парус представляет собой способ передвижения космического корабля с использованием давления световых и высокоскоростных газов (также называемого давлением солнечного света), излучаемого звездой. Рассмотрим подробнее его устройство.
Использование паруса предполагает недорогие космические путешествия в сочетании с увеличенным сроком использования. Из-за отсутствия множества движущихся частей, а также необходимости использовать пропеллент, потенциально становится возможным многоразовое использование такого корабля для доставки полезных грузов. Также иногда используются названия световой или фотонный парус.
История концепции
Йоханес Кеплер как-то заметил, что хвост кометы смотрит по направлению от Солнца, и предположил, что именно звезда производит такой эффект. В письме Галилею в 1610 году он писал: "Обеспечьте корабль парусом, приспособленным к солнечному бризу, и найдутся те, кто отважится исследовать и эту пустоту". Возможно, при этих словах он ссылался именно на феномен "хвоста кометы", хотя публикации на эту тему появились несколько лет спустя.
Джеймс К. Максвелл в 60-х годах XIX века опубликовал теорию электромагнитного поля и излучений, в которой показал, что свет имеет импульс и таким образом может оказывать давление на объекты. Уравнения Максвелла дают теоретическую основу для передвижения при помощи светового давления. Поэтому уже в 1864 году в сообществе физиков и вне его было известно, что солнечный свет несет импульс, оказывающий давление на объекты.
Сначала Петр Лебедев в 1899 году экспериментально продемонстрировал давление света, а затем Эрнест Николс и Гордон Халл провели аналогичный независимый эксперимент в 1901 году с использованием радиометра Николса.
Альберт Эйнштейн представил другую формулировку, признав эквивалентность массы и энергии. Теперь мы можем написать просто p = E/c как соотношение между импульсом, энергией и скоростью света.
Сванте Аррениус предсказал в 1908 году возможность давления солнечной радиации, переносящей живые споры на межзвездные расстояния, и, как следствие, понятие панспермии. Он был первым ученым, заявившим, что свет может перемещать объекты между звездами.
Фридрих Цандер опубликовал документ, включающий технический анализ солнечного паруса. Он писал об «использовании огромных и очень тонких листах зеркал» и «давлении солнечного света для достижения космических скоростей».
Первые официальные проекты по разработке этой технологии начались в 1976 году в Лаборатории реактивного движения для предлагаемой миссии по «рандеву» с кометой Галлея.
Принцип работы солнечного паруса
Свет оказывает влияние на все аппараты на орбите планеты или в межпланетном пространстве. К примеру, обычный космический корабль, следующий на Марс, будет смещен более чем на 1000 км по направлению от Солнца. Эти эффекты учитываются при планировании траектории космического путешествия со времен самого первого межпланетного космического корабля 1960-х годов. Излучение также влияет на позицию аппарата, и этот фактор должен учитываться в проекте судна. Сила, воздействующая на солнечный парус, составляет 1 ньютон и меньше.
Использование этой технологии удобно на межзвездных орбитах, где любые действия выполняются низкими темпами. Вектор силы светового паруса ориентирован вдоль солнечной линии, что увеличивает энергию орбиты и момент импульса, в результате чего корабль движется дальше от Солнца. Для изменения наклона орбиты вектор силы оказывается вне плоскости вектора скорости.
Контроль позиции
Система управления ориентацией (ACS) космического корабля необходима для достижения и изменения желаемой позиции при путешествии по Вселенной. Заданное положение аппарата меняется очень медленно, часто меньше одного градуса в день на межпланетном пространстве. Этот процесс происходит гораздо быстрее на орбитах планет. Система управления аппаратом, использующим солнечный парус, должна удовлетворять всем требованиям к ориентации.
Контроль достигается путем относительного сдвига между центром давления судна и его центром масс. Этого можно достичь с помощью управляющих лопаток, движения отдельных парусов, перемещения контрольной массы или изменения отражательной способности.
Неизменная позиция требует, чтобы ACS поддерживал чистый крутящий момент на нуле. Момент силы паруса не постоянен вдоль траектории. Изменения с расстоянием от Солнца и углом, который корректирует вал паруса и отклоняет некоторые элементы опорной конструкции, что приводит к изменениям силы и крутящего момента.
Ограничения
Солнечный парус не сможет работать на высоте ниже, чем 800 км от Земли, так как до этого расстояния сила сопротивления воздуха превышает силу светового давления. То есть влияние солнечного давления слабо ощутимо, и он просто не будет работать. Скорость поворота парусного судна должна быть совместима с орбитой, что обычно является проблемой только для конфигурации вращающихся дисков.
Рабочая температура зависит от солнечного расстояния, угла, отражательной способности, а также передних и задних излучателей. Парус можно использовать только там, где температура поддерживается в его материальных пределах. Как правило, он может использоваться довольно близко к солнцу, около 0,25 астрономических единиц, если корабль тщательно спроектирован для этих условий.
Конфигурация
Эрик Дрекслер изготовил прототип солнечного паруса из специального материала. Он представляет собой каркас с панелью из тонкой алюминиевой пленки толщиной от 30 до 100 нанометров. Парус вращается и должен постоянно находиться под давлением. Конструкция такого типа обладает высокой площадью на единицу массы и, следовательно, получает ускорение «в пятьдесят раз выше», чем основанные на развертываемых пластиковых пленках. Она представляет собой квадратные паруса с мачтами и парными линиями на темной стороне паруса. Четыре пересекающиеся мачты и одна - перпендикулярно центру, чтобы удерживать провода.
Электронная конструкция
Пекка Янхунен изобрел электрический парус. Механически он имеет мало общего с традиционным дизайном светового. Паруса заменяются выпрямленными проводящими тросами (проводами), расположенными радиально вокруг корабля. Они создают электрическое поле. Оно простирается на несколько десятков метров в плазму окружающего солнечного ветра. Солнечные электроны отражаются электрическим полем (как фотоны на традиционном солнечном парусе). Корабль может управляться путем регулирования электрического заряда проводов. Электрический парус имеет 50-100 выпрямленных проводов длиной около 20 км.
Из чего изготовлен?
Материал, разработанный для солнечного паруса Дрекслера, представляет собой тонкую алюминиевую пленку толщиной 0,1 микрометра. Как и ожидалось, она продемонстрировала достаточную прочность и надежность для использования в космосе, но не для складывания, запуска и развертывания.
Наиболее распространенным материалом в современных конструкциях является алюминиевая пленка "Каптон" размером 2 мкм. Она сопротивляется высоким температурам рядом с Солнцем и достаточно крепкая.
Были некоторые теоретические предположения о применении методов молекулярного производства для создания продвинутого, сильного, сверхлегкого паруса, основанного на тканевых сетках из нанотрубок, где плетеные «промежутки» меньше половины длины волны света. Такой материал был создан только в лабораторных условиях, а средства для изготовления в промышленном масштабе пока недоступны.
Световой парус открывает огромные перспективы для межзвездных передвижений. Конечно, есть еще много вопросов и проблем, с которыми придется столкнуться, прежде чем путешествие по Вселенной при помощи такой конструкции космического корабля станет привычным делом для человечества.