Как ведет себя конденсатор в цепи переменного тока?
Если источник питания переменного тока подключен к резистору, то ток и напряжение в цепи в любой точке временной диаграммы будут пропорциональны друг другу. Это означает, что кривые тока и напряжения будут достигать "пикового" значения одновременно. При этом мы говорим, что ток и напряжение находятся в фазе.
Рассмотрим теперь, как будет себя вести конденсатор в цепи переменного тока.
Если к источнику переменного напряжения подключен конденсатор, максимальное значение напряжения на нем будет пропорционально максимальному значению тока, протекающего в цепи. Однако пик волны синусоиды напряжения не будет наступать в то же самое время, что и максимум тока.
В этом примере мгновенное значение тока достигает своего максимального значения на четверть периода (90 эл.град.) раньше, чем это сделает напряжение. В таком случае говорят, что «ток опережает напряжение на 90◦».
В отличие от от ситуации в цепи постояннго тока, значение V/I здесь не является постоянным. Тем не менее, отношение V max/I max является весьма полезной величиной и в электротехнике называется емкостным сопротивлением (Хс) компонента. Поскольку эта величина по-прежнему отображает отношение напряжения к току, т.е. в физическом смысле является сопротивлением, ее единицей измерения является Ом. Значение Хс конденсатора зависит от его емкости (С) и частоты переменного тока (f).
Так как на конденсатор в цепи переменного тока подается среднеквадратичное значение напряжения, в этой цепи протекает такой же переменный ток, который ограничивается конденсатором. Это ограничение обусловлено реактивным сопротивлением конденсатора.
Поэтому значение тока в цепи, не содержащей никаких других компонентов, кроме конденсатора, определяется альтернативной версией Закона Ома
IRMS = URMS / XC
Где URMS - среднеквадратическое (действующее) значение напряжения. Обратите внимание, что Xс заменяет величину R в версии закона Ома для постоянного тока.
Теперь мы видим, что конденсатор в цепи переменного тока ведет себя совсем не так, как постоянный резистор, и ситуация здесь, соответственно, обстоит сложнее. Для того чтобы лучше понять процессы, происходящие в такой цепи, полезно ввести такое понятие, как вектор.
Основная идея вектора – это представление о том, что комплексное значение изменяющегося во времени сигнала может быть представлено как произведение комплексного числа (которое не зависит от времени) и некоего комплексного сигнала, являющегося функцией времени.
Например, мы можем представить функцию A cos(2πνt + θ) просто как сложную постоянную A∙ejΘ .
Так как векторы представлены величиной (или модулем) и углом, то графически они представляются стрелкой (или вектором), вращающейся в плоскости XY.
С учетом того, что напряжение на конденсаторе «запаздывает» по отношению к току, представляющие их векторы расположены в комплексной плоскости так, как показано на рисунке выше. На этом рисунке векторы тока и напряжения вращаются в направлении, противоположном движению часовой стрелки.
В нашем примере ток на конденсаторе обусловлен его периодическим перезарядом. Поскольку конденсатор в цепи переменного тока обладает способностью периодически накапливать и сбрасывать электрический заряд, между ним и источником питания происходит постоянный обмен энергией, которая в электротехнике называется реактивной.