Что такое математика?

Однозначного ответа на вопрос о том, что такое математика, даже сегодня еще не существует, несмотря на то, что данная наука зародилась достаточно давно, практически на заре цивилизации. На протяжении всего времени она обогащалась, все больше при этом утверждаясь и обновляясь в качестве способа познания закономерностей окружающего мира.

Благодаря расширению и изменению многогранных связей математики с практикой, человечеству предоставляется уникальная возможность открывать и использовать те или иные законы природы. В нынешнее время она является поистине могучим и мощным двигателем техники и науки.

Что такое математика? Интересует это многих, но ответить на данный вопрос непросто. Безусловно, каждый способен дать свой собственный ответ, который будет зависеть от уровня его математических знаний. Для ученика средней школы это обобщенное название арифметики, алгебры, геометрии и начал анализа. Для студента технического ВУЗа это – наука, состоящая из нескольких десятков отдельных разделов.

Следует отметить, что число таких разделов со временем неустанно увеличивается, так как по мере своего развития современная математика постоянно обогащается новыми сведениями. Ну, а для маленького ребенка эта наука заключается в умении считать. Тем не менее, вся наша жизнь неразрывно связана с решением разнообразных математических задач.

Аналогично определению, что такое математика, не существует и общепринятого четкого определения предмета данной науки. В прошлом считалось, что решение таких задач заключается в измерении величин либо чисел. Но спустя некоторое время возникло определение математики как учения о бесконечных величинах.

Современный мир рассматривает математику как науку о математических структурах. Данный термин был введен группой французских математиков, известных миру под псевдонимом Бурбаки.

Данная наука не является произвольным творением мысли. Она отображает объективный мир в несколько абстрактном виде. Ее изучения основаны на понятиях, полученных путем абстрагирования от явлений непосредственно реального мира и, кроме того, от предыдущих абстракций.

Возникновение таких абстракций тесно связано с реальной действительностью. Более того, после решения той или иной математической задачи ее результат фиксируется, а затем применяется к различным явлениям, физическая природа которых существенно отличается друг от друга.

К примеру, изучение математики нередко сводится к решению конкретных задач: как найти скорость размножения бактерий, как изменяется атмосферное давление, или как определить скорость радиоактивного распада. При этом решение всех этих задач сводится к одному и тому же дифференциальному уравнению.

Подобную абстрактность довольно сложно не только понять, но и прочувствовать взрослому, а тем более ученику. Именно поэтому так важно сделать изучение математики доступным каждому. А для этого требуется соблюсти баланс конкретики и абстракции, интуитивности и строгости, не утратив легкости объяснений сложных понятий.

Безусловно, сегодня трудно найти кого-то, кто не имел бы представления о том, что такое математика. Но, как правило, многие ошибочно полагают, что это всего лишь арифметика, подразумевающая изучение чисел и определенных действий с их помощью, таких, как умножение или деление.

Но если углубиться в данную науку, можно понять, что на самом деле это понятие намного объемнее. Ведь математика является своеобразным способом описания мира и сочетания одних его частей с другими. В математических символах, описывающих Вселенную, выражаются взаимоотношения чисел.

Но как понять математику? Это уже отдельный вопрос. Подобный процесс требует терпения, желания и внимания. Однако все не так сложно. Каждому свойственно преуспевать в математике, поскольку доказано, что «ощущение числа» является врожденной способностью.

Никакого результата зазубривание аксиом, теорем и заучивание формул, к сожалению, не даст. Главное – это понимать суть математической теории и ее законов. И особого внимания требует умение делать выводы из тех утверждений, которые были поставлены.

Статья закончилась. Вопросы остались?
Добавить смайл
  • :smile:
  • :wink:
  • :frowning:
  • :stuck_out_tongue_winking_eye:
  • :smirk:
  • :open_mouth:
  • :grinning:
  • :pensive:
  • :relaxed:
  • :heart:
Подписаться
Я хочу получать
Правила публикации
Следят за новыми комментариями — 4
Редактирование комментария возможно в течении пяти минут после его создания, либо до момента появления ответа на данный комментарий.