Критерий Манна-Уитни: пример, таблица
Критерий в математической статистике - это строгое правило, в соответствии с которым гипотеза с определённым уровнем значимости принимается или отвергается. Чтобы построить его, необходимо найти определенную функцию. Она должна зависеть от конечных результатов эксперимента, то есть от эмпирически найденных значений. Именно эта функция будет являться инструментом оценки расхождения между выборками.
Статистически значимая величина. Общие сведения
Статистическая значимость – это величина, вероятность случайного возникновения которой очень мала. Незначительны также и более крайние ее показатели. Разницу называют статистически значимой в том случае, если существуют данные, вероятность появления которых незначительна, если утверждать, что эти расхождения не существуют. Но это не значит вовсе, что эта разница обязательно должна быть велика и значима.
Уровень статистической достоверности теста
Под данным термином следует понимать вероятность отклонения нулевой гипотезы в случае её истинности. Это также называется ошибкой первого рода или ложноположительным решением. В большинстве случаев процесс опирается на p-величину ("пи-величина"). Это накопленная вероятность при наблюдении за уровнем статистического критерия. Он, в свою очередь, насчитывается по выборке во время принятия нулевой гипотезы. Предположение будет отвергнуто, если эта p-величина будет меньше заявленного аналитиком уровня. От этого показателя зависит напрямую значимость тестовой величины: чем она меньше, тем, соответственно, и больше оснований отвергнуть гипотезу.
Определение нулевой гипотезы
В математической статистике это предположение, проверяемое на согласованность с уже имеющимися в запасе эмпирическими данными. В большинстве случаев в качестве нулевой гипотезы берётся гипотеза о том, что корреляция между исследуемыми переменными отсутствует или что в изучаемых распределениях нет различий однородности. При стандартных исследованиях математик пытается опровергнуть нулевую гипотезу, то есть доказать, что она не согласована с экспериментально полученными данными. Причем должно иметь место и альтернативное предположение, которое принимается вместо нулевого.
Ключевое определение
Критерий U (Манна-Уитни) в математической статистике позволяет оценивать различия двух выборок. Они могут быть даны по уровню некоего признака, который измерен количественно. Этот метод идеален для оценки различий малых выборок. Этот простой критерий был предложен Фрэнком Уилкоксоном в 1945 году. А уже в 1947 году метод был пересмотрен и дополнен учёными Х. Б. Манном и Д. Р. Уитни, именами которых он и именуется по сей день. Критерий Манна-Уитни в психологии, математике, статистике и во многих других науках является одним из основополагающих элементов математического обоснования результатов теоретических исследований.
Описание
Критерий Манна-Уитни - относительно простой метод без параметров. Его мощность значительна. Она существенно выше, чем мощность Q-критерия Розенбаума. Метод оценивает, насколько мала область перекрёстных значений между выборками, а именно между ранжированными рядами значений первой и второй подборки. Чем значение критерия меньше, тем больше вероятность, что расхождения значений параметра достоверны. Чтобы корректно применить критерий U (Манна-Уитни), не стоит забывать о некоторых ограничениях. В каждой выборке должно быть как минимум 3 значения признака. Возможна ситуация, когда в одном случае значений два, но во втором обязательно тогда их должно быть хотя бы пять. В исследуемых выборках должно быть минимальное количество совпадающих показателей. Все числа должны быть разными в идеальном случае.
Использование
Как правильно использовать критерий Манна-Уитни? Таблица, которая составлена по данному методу, содержит определенные критические значения. Для начала нужно создать единый ряд из обеих сопоставленных выборок, который затем ранжируется. То есть элементы выстраиваются по степени нарастания признака, и меньший ранг присваивается меньшему значению. В итоге получим такое общее число рангов:
N = N1 + N2,
где величины N1 и N2 - количество единиц, содержащихся в первой и второй выборках соответственно. Далее единый ранжированный ряд значений делится на две категории. Единицы, соответственно, из первой и второй выборок. Теперь считается по очереди сумма рангов значений в первом и во втором рядах. Определяется большая из них (Tx), которая соответствует выборке с nx единицами. Чтобы использовать метод Уилкоксона далее, вычисляется его значение по следующей методике. Необходимо по таблице для выбранного уровня значимости выяснить критическое значение этого критерия для конкретно взятых N1 и N2.