Классы точности средств измерения. Контрольно-измерительные приборы. 5 класс точности

Высокоточные приборы используются в самых разных сферах жизни и производства современного общества. Без специального оборудования не было бы полетов в космос, развития военной и гражданской техники и многого другого. Ремонт подобного оборудования производить достаточно сложно. Поэтому и применяются различные контрольно-измерительные приборы. Их качество определяется уровнем соответствия данного оборудования своему прямому предназначению. Для удобства измерения также применяются и классы точности средств измерения.

Что такое единица измерения?

Каждая стадия технологического или природного процесса характеризуется определенными величинами: температурой, давлением, плотностью и т. д. Постоянно следя за этими параметрами, можно контролировать и даже корректировать любое действие. Для удобства были созданы стандартные единицы измерения для каждого конкретного процесса, такие как метр, Дж, кг и т. д. Они делятся на:

· Основные. Это неизменные и общепринятые единицы измерения.

· Когерентные. Это связанные с другими единицами производные. Их числовой коэффициент приравнен к единице.

· Производные. Эти единицы измерения определяются из основных величин.

· Кратные и дольные. Они создаются путем умножения или деления на 10 основных либо произвольных единиц.

В каждой отрасли есть группа величин, которые постоянно используются при наблюдении и корректировке процессов. Такая совокупность единиц измерения называется системой. Контролируют и сверяют параметры процесса при этом специальные контрольно-измерительные приборы. Их параметры заданы с помощью Международной системы единиц.

Способы и средства измерений

Для того чтобы сравнить или проанализировать полученную величину, следует провести ряд опытов. Проводятся они несколькими распространенными способами:

· Прямые. Это такие методы, при которых любое значение получают опытным путем. К ним относятся непосредственная оценка, нулевая компенсация и дифференциация. Прямые способы измерения отличаются простотой и скоростью. Например, измерение давления стандартным инструментом. При этом класс точности манометра значительно ниже, чем при других исследованиях.

· Косвенные. Такие методы основываются на вычислении определенных величин из известных или общепринятых параметров.

· Совокупные. Это способы измерений, при которых искомая величина определяется не только решением ряда уравнений, но и с помощью специальных опытов. Такие исследования чаще всего применяются в лабораторной практике.

Кроме способов измерения величин есть еще и специальные измерительные приборы. Это средства нахождения искомого параметра.

Что такое контрольно-измерительные приборы?

Наверное, каждый человек хотя бы один раз в жизни проводил какие-либо опыты или лабораторные исследования. Там использовались манометры, вольтметры и другие интересные приспособления. Каждый пользовался своим прибором, но был один – контрольный, на который равнялись все.

Так всегда – для точности качества измерения все устройства должны четко соответствовать установленному стандарту. При этом не исключаются некоторые погрешности. Поэтому на государственном и международном уровне были введены классы точности средств измерения. Именно по ним определяется допустимая погрешность в расчетах и показателях.

Существуют также несколько основных операций контроля таких приборов:

· Испытание. Этот метод осуществляется еще на стадии производства. Каждое устройство тщательно проверяют на соответствие стандартам качества.

· Проверка. При этом сравниваются показание образцовых приборов с испытуемыми. В лаборатории, например, все устройства проверяются каждые два года.

· Градуировка. Это операция, при которой всем делениям шкалы испытуемого прибора придают соответствующие значения. Как правило, осуществляется это более точными и высокочувствительными устройствами.

Классификация контрольно-измерительных приборов

Сейчас существует огромное количество устройств, с помощью которых проверяют данные и показатели. Поэтому все контрольно-измерительные приборы можно классифицировать по нескольким основным признакам:

1. По роду измеряемой величины. Или по назначению. Например, измеряющие давление, температуру, уровень или состав, а также состояние вещества и т. д. При этом у каждого есть свои стандарты качества и точности, например как класс точности счетчиков, термометров и др.

2. По способу получения внешней информации. Здесь идет более сложная классификация:

- регистрирующие - такие устройства самостоятельно записывают все входные и выходные данные для последующего анализа;

- показывающие - эти приборы дают возможность исключительно наблюдать за изменениями какого-либо процесса;

- регулирующие - данные устройства автоматически настраиваются на значение измеряемой величины;

- суммирующие - здесь берется какой-либо промежуток времени и прибор показывает общее значение величины за весь период;

- сигнализирующие - такие устройства оборудованы специальной звуковой или световой системой оповещения или датчиками;

- компарирующие - это оборудование призвано сравнивать определенные величины с соответствующими мерами.

3. По расположению. Различают местные и дистанционные измерительные устройства. При этом последние имеют возможность передавать полученные данные на любое расстояние.

Характеристика контрольно-измерительных приборов

В каждой работе следует помнить, что проверке подлежат не только рабочие устройства, но и стандартные образцы. Их качество зависит сразу от нескольких показателей, таких как:

· Класс точности или диапазон погрешности. Всем приборам свойственно ошибаться, даже эталонам. Разница лишь в том, чтобы ошибок в работе было как можно меньше. Очень часто здесь применяется класс точности А.

· Чувствительность. Это отношение углового или линейного перемещения стрелки указателя к изменению исследуемой величины.

· Вариация. Это допустимая разница между повторными и действительными показаниями одного и того же прибора в одинаковых условиях.

· Надежность. Данный параметр отражает сохранение всех заданных характеристик на протяжении определенного времени.

· Инерционность. Так характеризуется некоторое отставание во времени показаний прибора и измеряемой величины.

Также хороший КИП должен обладать такими качествами, как долговечность, безотказность и ремонтопригодность.

Что такое погрешность?

Специалисты знают, что в любой работе существуют небольшие ошибки. При проведении различных измерений их называют погрешностями. Все они обусловлены недоработкой и несовершенством средств и методов исследований. Поэтому любому оборудованию соответствуют свой класс точности, например 1 или 2 класс точности.

При этом различают такие виды погрешностей:

· Абсолютная. Это разница между показателями используемого прибора и показателями эталонного устройства в тех же условиях.

· Относительная. Такую погрешность можно назвать косвенной, т.к. это отношение найденной абсолютной погрешности к действительному значению заданной величины.

· Относительная приведенная. Это определенное отношение между абсолютным значением и разностью верхнего и нижнего пределов шкалы используемого прибора.

Также существует классификация по характеру погрешности:

· Случайные. Такие погрешности возникают без какой-либо закономерности или системности. Часто на показатели влияют различные внешние факторы.

· Систематические. Такие ошибки возникают по определенному закону или правилу. В большей степени их появление зависит от состояния КИП.

· Промахи. Такие погрешности достаточно резко искажают полученные ранее данные. Эти ошибки легко убираются при сопоставлении соответствующих измерений.

Что такое 5 класс точности?

Для упорядочивания полученных данных специализированных приборов, а также для определения их качества современной наукой принята специальная система измерений. Именно она определяет подходящий уровень настроек.

Классы точности средств измерения – это некая обобщенная характеристика. Она предусматривает определение пределов различных погрешностей и свойств, влияющих на точность приборов. При этом у каждого вида измерительных приборов есть собственные параметры и классы.

Согласно точности и качества измерения, большинство современных контрольных устройств имеют такие разделения: 0,1; 0,15; 0,2;0,25; 0,4; 0,5; 0,6; 1,0; 1,5; 2,0; 2,5; 4,0. При этом диапазон погрешности зависит от используемой шкалы прибора. Например, для оборудования со значениями 0 – 1000 °С допускаются ошибочные измерения ± 15°С.

Если говорить о промышленном и сельскохозяйственном оборудовании, то их точность подразделяется на такие классы:

· 1-500 мм. Здесь применяют 7 классов точности: 1, 2, 2а, 3, 3а, 4 и 5.

· Свыше 500 мм. Используются классы 7, 8, и 9.

При этом наивысшее качество будет у прибора с единичкой. А 5 класс точности используется в основном в изготовлении деталей различных сельскохозяйственных машин, вагоно- и паровозостроении. Стоит также отметить, что он имеет две посадки: Х₅ и С₅.

Если говорить о компьютерных технологиях, например, печатных платах, то 5 класс отвечает повышенной точности и плотности конструкции. При этом ширина проводника составляет менее 0,15, а расстояние между проводниками и краями просверленного отверстия не превышает 0,025.

Межгосударственные стандарты точности в России

Любой современный ученый ищет свою систему определения качества используемых приборов и полученных данных. Для обобщения и систематизации точности измерений были приняты межгосударственные стандарты.

Они определяют основные положения деления приборов на классы, комплекс всех требований к подобному оборудованию и способы нормирования различных метрологических характеристик. Классы точности средств измерений устанавливаются специальным ГОСТом 8.401-80 ГСИ. Эта система была введена на основе международной рекомендации МОЗМ № 34 с 1 июля 1981 года. Здесь выложены общие положения, определение погрешностей и обозначение самих классов точности с конкретными примерами.

Основные положения для определения классов точности

Для правильного определения качества всех измерительных приборов и получаемых данных существует несколько основных правил:

· классы точности следует выбирать в соответствии с видами используемого оборудования;

· для разных диапазонов измерений и величин можно использовать несколько стандартов;

· только технико-экономическое обоснование определяет число классов точности для конкретного оборудования;

· измерения проводятся без учета режима обработки. Эти стандарты применяются к цифровым приборам со встроенным вычислительным устройством;

· классы точности измерений присваиваются с учетом существующих результатов государственных испытаний.

Электродинамические КИП

К подобным устройствам можно отнести амперметры, ваттметры или вольтметры и другие приборы, преобразующие различные величины в ток. Для их правильной и стабильной работы применяется специальное экранирование измерительного оборудования. Это делается, например, чтобы повысить класс точности вольтметра.

Принцип действия данных приборов состоит в том, что внешнее магнитное поле одновременно усиливает поле одного измерительного устройства и ослабляет поле другого. При этом суммарное значение неизменно.

К плюсам такого КИП можно отнести надежность, безотказность и простоту. Он одинаково работает как при постоянном, так и при переменном токе.

А самыми весомыми недостатками являются невысокая точность и большое энергопотребление.

Электростатические КИП

Эти приборы работают на принципе взаимодействия заряженных электродов, которые разделены диэлектриком. Конструктивно они выглядят практически как плоский конденсатор. При этом, при перемещении подвижной части емкость системы также изменяется.

Наиболее известные из них – это устройства с линейным и поверхностным механизмом. У них немного разный принцип действия. У приборов с поверхностным механизмом емкость изменяется за счет колебаний активной площади электродов. В другом случае важно расстояние между ними.

К достоинствам таких устройств относятся небольшая мощность потребления, класс точности ГОСТ, достаточно широкий частотный диапазон и т.д.

Недостатками являются небольшая чувствительность прибора, необходимость экранирования и пробой между электродами.

Магнитоэлектрические КИП

Это еще один вид наиболее распространенных измерительных устройств. Принцип действия данных приборов основан на взаимодействии магнитного потока магнита и катушки с током. Чаще всего используется оборудование с внешним магнитом и подвижной рамкой. Конструктивно они состоят из трех элементов. Это цилиндрический сердечник, внешний магнит и магнитопровод.

К плюсам данных КИП можно отнести высокую чувствительность и точность, небольшую мощность потребления и хорошее успокоение.

К минусам представленных устройств относят сложность изготовления, неспособность сохранять свои свойства с течением времени и подверженность влиянию температуры. Поэтому, например, класс точности манометра значительно снижается.

Другие виды КИП

Кроме представленных выше устройств, есть еще несколько основных измерительных приборов, которые наиболее часто используются в повседневной жизни и производстве.

К такому оборудованию относятся:

· Термоэлектрические приборы. Они измеряют силу тока, напряжение и мощность.

· Магнитоэлектрические приборы. Они подходят для измерения напряжения и количества электричества.

· Комбинированные устройства. Здесь для измерения сразу нескольких величин используется всего один механизм. Классы точности средств измерения применяются те же, что и для всех. Чаще всего они работают с силой постоянного и переменного тока, индуктивностью и сопротивлением.

Комментарии