Термоядерные реакторы в мире. Первый термоядерный реактор
Сегодня многие страны принимают участие в термоядерных исследованиях. Лидерами являются Европейский союз, США, Россия и Япония, а программы Китая, Бразилии, Канады и Кореи стремительно наращиваются. Первоначально термоядерные реакторы в США и СССР были связаны с разработкой ядерного оружия и оставались засекреченными до конференции «Атомы для мира», которая состоялась в Женеве в 1958 году. После создания советского токамака исследования ядерного синтеза в 1970 годы стали «большой наукой». Но стоимость и сложность устройств увеличивалась до точки, когда международное сотрудничество стало единственной возможностью продвигаться вперед.
Термоядерные реакторы в мире
Начиная с 1970 годов, начало коммерческого использования энергии синтеза постоянно отодвигалось на 40 лет. Однако в последние годы произошло многое, благодаря чему этот срок может быть сокращен.
Построено несколько токамаков, в том числе европейский JET, британский MAST и экспериментальный термоядерный реактор TFTR в Принстоне, США. Международный проект ITER в настоящее время находится в стадии строительства в Кадараше, Франция. Он станет самым крупным токамаком, когда заработает в 2020 годах. В 2030 г. в Китае будет построен CFETR, который превзойдет ITER. Тем временем КНР проводит исследования на экспериментальном сверхпроводящем токамаке EAST.
Термоядерные реакторы другого типа – стеллаторы – также популярны у исследователей. Один из крупнейших, LHD, начал работу в японском Национальном институте термоядерного синтеза в 1998 году. Он используется для поиска наилучшей магнитной конфигурации удержания плазмы. Немецкий Институт Макса Планка в период с 1988 по 2002 год проводил исследования на реакторе Wendelstein 7-AS в Гархинге, а в настоящее время – на Wendelstein 7-X, строительство которого длилось более 19 лет. Другой стелларатор TJII эксплуатируется в Мадриде, Испания. В США Принстонская лаборатория физики плазмы (PPPL), где был построен первый термоядерный реактор данного типа в 1951 году, в 2008 году остановила строительство NCSX из-за перерасхода средств и отсутствия финансирования.
Кроме того, достигнуты значительные успехи в исследованиях инерциального термоядерного синтеза. Строительство National Ignition Facility (NIF) стоимостью 7 млрд $ в Ливерморской национальной лаборатории (LLNL), финансируемое Национальной администрацией по ядерной безопасности, было завершено в марте 2009 г. Французский Laser Mégajoule (LMJ) начал работу в октябре 2014 года. Термоядерные реакторы используют доставленные лазерами в течение нескольких миллиардных долей секунды около 2 млн джоулей световой энергии в цель размером в несколько миллиметров для запуска реакции ядерного синтеза. Основной задачей NIF и LMJ являются исследования по поддержке национальных военных ядерных программ.
ITER
В 1985 г. Советский Союз предложил построить токамак следующего поколения совместно с Европой, Японией и США. Работа велась под эгидой МАГАТЭ. В период с 1988 по 1990 год были созданы первые проекты Международного термоядерного экспериментального реактора ITER, что также означает «путь» или «путешествие» на латыни, с целью доказать, что синтез может вырабатывать больше энергии, чем поглощать. Канада и Казахстан также приняли участие при посредничестве Евратома и России соответственно.
Через 6 лет совет ITER одобрил первый комплексный проект реактора на основе устоявшейся физики и технологии стоимостью 6 млрд $. Тогда США вышли из консорциума, что вынудило вдвое сократить затраты и изменить проект. Результатом стал ITER-FEAT стоимостью 3 млрд долл., но позволяющий достичь самоподдерживающей реакции и положительного баланса мощности.
В 2003 г. США вновь присоединились к консорциуму, а Китай объявил о своем желании в нем участвовать. В результате в середине 2005 года партнеры договорились о строительстве ITER в Кадараше на юге Франции. ЕС и Франция вносили половину от 12,8 млрд евро, а Япония, Китай, Южная Корея, США и Россия – по 10% каждый. Япония предоставляла высокотехнологичные компоненты, содержала установку IFMIF стоимостью 1 млрд евро, предназначенную для испытания материалов, и имела право на возведение следующего тестового реактора. Общая стоимость ITER включает половину затрат на 10-летнее строительство и половину – на 20 лет эксплуатации. Индия стала седьмым членом ИТЭР в конце 2005 г.
Эксперименты должны начаться в 2018 г. с использованием водорода, чтобы избежать активации магнитов. Использование D-T плазмы не ожидается ранее 2026 г.
Цель ITER – выработать 500 МВт (хотя бы в течение 400 с), используя менее 50 МВт входной мощности без генерации электроэнергии.
Двухгигаваттная демонстрационная электростанция Demo будет производить крупномасштабное производство электроэнергии на постоянной основе. Концептуальный дизайн Demo будет завершен к 2017 году, а его строительство начнется в 2024 году. Пуск состоится в 2033 году.
JET
В 1978 г. ЕС (Евратом, Швеция и Швейцария) начали совместный европейский проект JET в Великобритании. JET сегодня является крупнейшим работающим токамаком в мире. Подобный реактор JT-60 работает в японском Национальном институте термоядерного синтеза, но только JET может использовать дейтерий-тритиевое топливо.
Реактор был запущен в 1983 году, и стал первым экспериментом, в результате которого в ноябре 1991 года был проведен управляемый термоядерный синтез мощностью до 16 МВт в течение одной секунды и 5 МВт стабильной мощности на дейтерий-тритиевой плазме. Было проведено множество экспериментов с целью изучения различных схем нагрева и других техник.
Дальнейшие усовершенствования JET касаются повышения его мощности. Компактный реактор MAST разрабатывается вместе с JET и является частью проекта ITER.
K-STAR
K-STAR – корейский сверхпроводящий токамак Национального института термоядерных исследований (NFRI) в Тэджоне, который произвел свою первую плазму в середине 2008 года. Это пилотный проект ITER, являющийся результатом международного сотрудничества. Токамак радиусом 1,8 м – первый реактор, использующий сверхпроводящие магниты Nb3Sn, такие же, которые планируется использовать в ITER. В ходе первого этапа, завершившегося к 2012 году, K-STAR должен был доказать жизнеспособность базовых технологий и достигнуть плазменных импульсов длительностью до 20 с. На втором этапе (2013–2017) проводится его модернизация для изучения длинных импульсов до 300 с в режиме H и перехода к высокопроизводительному AT-режиму. Целью третьей фазы (2018–2023) является достижение высокой производительности и эффективности в режиме длительных импульсов. На 4 этапе (2023–2025) будут испытываться технологии DEMO. Устройство не способно работать с тритием и D-T топливо не использует.
K-DEMO
Разработанный в сотрудничестве с Принстонской лабораторией физики плазмы (PPPL) Министерства энергетики США и южно-корейским институтом NFRI, K-DEMO должен стать следующим шагом на пути создания коммерческих реакторов после ITER, и будет первой электростанцией, способной генерировать мощность в электрическую сеть, а именно 1 млн кВт в течение нескольких недель. Его диаметр составит 6,65 м, и он будет иметь модуль зоны воспроизводства, создаваемый в рамках проекта DEMO. Министерство образования, науки и технологий Кореи планирует инвестировать в него около триллиона корейских вон (941 млн $).
EAST
Китайский экспериментальный усовершенствованный сверхпроводящий токамак (EAST) в Институте физики Китая в Хефее создал водородную плазму температурой 50 млн °C и удерживал ее в течение 102 с.
TFTR
В американской лаборатории PPPL экспериментальный термоядерный реактор TFTR работал с 1982 по 1997 годы. В декабре 1993 г. TFTR стал первым магнитным токамаком, на котором производились обширные эксперименты с плазмой из дейтерий-трития. В следующем году реактор произвел рекордные в то время 10,7 МВт управляемой мощности, а в 1995 году был достигнут рекорд температуры ионизированного газа в 510 млн °C. Однако установка не достигла цели безубыточности энергии термоядерного синтеза, но с успехом выполнила цели проектирования аппаратных средств, сделав значительный вклад в развитие ITER.
LHD
LHD в японском Национальном институте термоядерного синтеза в Токи, префектура Гифу, был самым большим стелларатором в мире. Запуск термоядерного реактора состоялся в 1998 г., и он продемонстрировал качества удержания плазмы, сравнимые с другими крупными установками. Была достигнута температура ионов 13,5 кэВ (около 160 млн °C) и энергия 1,44 МДж.
Wendelstein 7-X
После года испытаний, начавшихся в конце 2015 года, температура гелия на короткое время достигла 1 млн °C. В 2016 г. термоядерный реактор с водородной плазмой, используя 2 МВт мощности, достиг температуры 80 млн °C в течение четверти секунды. W7-X является крупнейшим стелларатором в мире и планируется его непрерывная работа в течение 30 минут. Стоимость реактора составила 1 млрд €.
NIF
National Ignition Facility (NIF) в Ливерморской национальной лаборатории (LLNL) был завершен в марте 2009 года. Используя свои 192 лазерных лучей, NIF способен сконцентрировать в 60 раз больше энергии, чем любая предыдущая лазерная система.
Холодный ядерный синтез
В марте 1989 года два исследователя, американец Стенли Понс и британец Мартин Флейшман, заявили, что они запустили простой настольный холодный термоядерный реактор, работающий при комнатной температуре. Процесс заключался в электролизе тяжелой воды с использованием палладиевых электродов, на которых ядра дейтерия концентрировались с высокой плотностью. Исследователи утверждают, что производилось тепло, которое можно было объяснить только с точки зрения ядерных процессов, а также имелись побочные продукты синтеза, включая гелий, тритий и нейтроны. Однако другим экспериментаторам не удалось повторить этот опыт. Большая часть научного сообщества не считает, что холодные термоядерные реакторы реальны.
Низкоэнергетические ядерные реакции
Инициированные претензиями на «холодный термоядерный синтез», исследования продолжились в области низкоэнергетических ядерных реакций, имеющих некоторую эмпирическую поддержку, но не общепринятое научное объяснение. По-видимому, для создания и захвата нейтронов используются слабые ядерные взаимодействия (а не мощная сила, как при делении ядер или их синтезе). Эксперименты включают проникновение водорода или дейтерия через каталитический слой и реакцию с металлом. Исследователи сообщают о наблюдаемом высвобождении энергии. Основным практическим примером является взаимодействие водорода с порошком никеля с выделением тепла, количество которого больше, чем может дать любая химическая реакция.