Тилакоиды — это структурные компоненты хлоропластов
Хлоропласты являются мембранными структурами, в которых происходит фотосинтез. Этот процесс у высших растений и цианобактерий позволил планете сохранить способность поддерживать жизнь за счет утилизации углекислого газа и восполнения концентрации кислорода. Сам фотосинтез происходит в таких структурах, как тилакоиды. Это мембранные «модули» хлоропластов, в которых протекает перенос протонов, фотолиз воды, синтез глюкозы и АТФ.
Строение хлоропластов растений
Хлоропластами называются двухмембранные структуры, которые расположены в цитоплазме растительных клеток и хламидомонад. В отличие от них, клетки цианобактерий осуществляют фотосинтез в тилакоидах, а не в хлоропластах. Это пример низкоразвитого организма, который способен обеспечивать свое питание за счет ферментов фотосинтеза, расположенных на впячиваниях цитоплазмы.
По своей структуре хлоропласт является двухмембранной органеллой в виде пузырька. Они в большом количестве расположены в клетках фотосинтезирующих растений и развиваются только в случае контакта с ультрафиолетом. Внутри хлоропласта находится его жидкая строма. По своему составу она напоминает гиалоплазму и на 85% состоит из воды, в которой растворены электролиты и взвешены белки. Строма хлоропластов содержит тилакоиды, структуры, в которых непосредственно протекает световая и темновая фаза фотосинтеза.
Наследственный аппарат хлоропласта
Рядом с тилакоидами имеются гранулы с крахмалом, который является продуктом полимеризации глюкозы, полученной в результате фотосинтеза. Свободно в строме находятся и ДНК пластиды вместе с разрозненными рибосомами. Молекул ДНК может быть несколько. Они вместе с биосинтетическим аппаратом отвечают за восстановление структуры хлоропластов. Это происходит без использования наследственной информации ядра клетки. Данное явление позволяет судить и о возможности самостоятельного роста и размножения хлоропластов в случае деления клетки. Потому хлоропласты в некотором плане не зависят от ядра клетки и представляют как бы симбионтный низкоразвитый организм.
Строение тилакоидов
Тилакоиды — это мембранные структуры в виде дисков, расположенные в строме хлоропластов. У цианобактерий они и вовсе расположены на впячиваниях цитоплазматической мембраны, так как у них не имеется самостоятельных хлоропластов. Существует два вида тилакоидов: первый — это тилакоид с люменом, а второй — ламеллярный. Тилакоид с люменом меньше по диаметру и представляет собой диск. Несколько тилакоидов, составленных по вертикали, образуют грану.
Ламеллярные тилакоиды — это широкие пластинки, которые не имеют люмена. Но они являются площадкой, к которой крепятся множественные граны. В них фотосинтез практически не протекает, так как они нужны для образования прочной структуры, стойкой к механическим повреждениям клетки. Всего в хлоропластах может находиться от 10 до 100 тилакоидов с люменом, способных к фотосинтезу. Сами тилакоиды — это элементарные структуры, ответственные за фотосинтез.
Роль тилакоидов в фотосинтезе
В тилакоидах протекают важнейшие реакции фотосинтеза. Первая — это фотолизное расщепление молекулы воды и синтез кислорода. Вторая — транзит протона через мембрану посредством цитохромного молекулярного комплекса b6f и электротранспортной цепи. Также в тилакоидах протекает синтез макроэргической молекулы АТФ. Этот процесс происходит с использование протонного градиента, сложившегося между мембраной тилакоида и стромой хлоропласта. Это означает, что функции тилакоидов позволяют реализовать всю световую фазу фотосинтеза.
Световая фаза фотосинтеза
Необходимым условием существования фотосинтеза является возможность создания мембранного потенциала. Он достигается за счет переноса электронов и протонов, благодаря чему создается Н+ градиент, который в 1000 раз больше, чем в мембранах митохондрий. Электроны и протоны для создания электрохимического потенциала в клетке выгоднее взять из молекул воды. Под действием ультрафиолетового фотона на мембранах тилакоидов это становится доступным. Происходит выбивание электрона из одной молекулы воды, которая приобретает положительный заряд, а потому для ее нейтрализации требуется сбросить один протон. В результате 4 молекулы воды распадается на электроны, протоны и образует кислород.
Цепь процессов фотосинтеза
После фотолиза воды происходит перезарядка мембраны. Тилакоиды — это структуры, которые в ходе переноса протонов могут иметь кислую рН. В это время в строме хлоропласта рН слабощелочная. Это генерирует электрохимический потенциал, благодаря которому становится возможен синтез АТФ. Молекулы аденозинтрифосфата позже будут использованы для энергетических нужд и темновой фазы фотосинтеза. В частности, АТФ используется клеткой для утилизации углекислого газа, что достигается путем его конденсации и синтеза на их основе молекулы глюкозы.
Попутно в темновую фазу восстанавливается НАДФ-Н+ до НАДФ. Всего для синтеза одной молекулы глюкозы требуется 18 молекул АТФ, 6 молекул углекислого газа и 24 протона водорода. Это требует фотолиза 24 молекул воды на утилизацию 6 молекул углекислого газа. Данный процесс позволяет освободить 6 молекул кислорода, который позже будет использоваться другими организмами для своих энергетических нужд. При этом тилакоиды — это (в биологии) пример мембранной структуры, которая позволяет использовать солнечную энергию и трансмембранный потенциал с градиентом рН для преобразования их в энергию химических связей.