Точки Лагранжа и расстояние между ними. Точка Лагранжа L1. Использование точки Лагранжа для воздействия на климат
В системе вращения двух космических тел определенной массы существуют точки в пространстве, поместив в которые любой объект небольшой массы, можно зафиксировать его в стационарном положении относительно этих двух тел вращения. Эти точки получили название точек Лагранжа. В статье пойдет речь о том, как они используются человеком.
Что представляют собой точки Лагранжа?
Для понимания этого вопроса следует обратиться к решению проблемы трех вращающихся тел, два из которых имеют такую массу, что масса третьего тела пренебрежимо мала по сравнению с ними. В таком случае можно найти положения в пространстве, в которых гравитационные поля обоих массивных тел будут компенсировать центростремительную силу всей вращающейся системы. Эти положения и будут точками Лагранжа. Поместив в них тело малой массы, можно наблюдать, как его расстояния до каждого из двух массивных тел не изменяются сколь угодно долго. Здесь можно привести аналогию с геостационарной орбитой, находясь на которой, спутник всегда расположен над одной точкой земной поверхности.
Необходимо пояснить, что тело, которое находится в точке Лагранжа (ее также называют свободной точкой или точкой L), относительно внешнего наблюдателя совершает движение вокруг каждого из двух тел с большой массой, но это движение в совокупности с движением двух оставшихся тел системы имеет такой характер, что относительно каждого из них третье тело находится в покое.
Сколько этих точек и где они находятся?
Для системы вращающихся двух тел с абсолютно любой массой существует всего пять точек L, которые принято обозначать L1, L2, L3, L4 и L5. Все эти точки расположены в плоскости вращения рассматриваемых тел. Первые три точки находятся на линии, соединяющей центры масс двух тел таким образом, что L1 расположена между телами, а L2 и L3 за каждым из тел. Точки L4 и L5 расположены так, что если соединить каждую из них с центрами масс двух тел системы, то получатся два одинаковых треугольника в пространстве. Ниже на рисунке показаны все точки Лагранжа Земля-Солнце.
Синие и красные стрелки на рисунке показывают направление действия результирующей силы при приближении к соответствующей свободной точке. Из рисунка можно видеть, что области точек L4 и L5 являются намного большими, чем зоны точек L1, L2 и L3.
Историческая справка
Впервые существование свободных точек в системе трех вращающихся тел доказал итальяно-французский математик Жозеф Луи Лагранж в 1772 году. Для этого ученому пришлось ввести некоторые гипотезы и разработать собственную механику, отличную от механики Ньютона.
Лагранж вычислил точки L, которые были названы в честь его имени, для идеальных круговых орбит вращения. В действительности же орбиты являются эллиптическими. Последний факт приводит к тому, что уже не существуют точки Лагранжа, а существуют области, в которых третье тело малой массы совершает круговое движение подобно движению каждого из двух массивных тел.
Свободная точка L1
Существование точки Лагранжа L1 легко доказать, применяя следующие рассуждения: возьмем для примера Солнце и Землю, согласно третьему закону Кеплера, чем ближе тело находится к своей звезде, тем короче его период вращения вокруг этой звезды (квадрат периода вращения тела прямо пропорционален кубу среднего расстояния от тела до звезды). Это означает, что любое тело, которое расположено между Землей и Солнцем, будет вращаться вокруг звезды быстрее, чем наша планета.
Однако закон Кеплера не учитывает влияние гравитации второго тела, то есть Земли. Если принять во внимание этот факт, то можно предположить, что чем ближе к Земле находится третье тело малой массы, тем сильнее будет противодействие земной гравитации солнечной. В итоге найдется такая точка, где земная гравитация замедлит скорость вращения третьего тела вокруг Солнца таким образом, что периоды вращения планеты и тела сравняются. Это и будет свободная точка L1. Расстояние до точки Лагранжа L1 от Земли равно 1/100 от радиуса орбиты планеты вокруг звезды и составляет 1,5 млн км.
Как используют область L1? Это идеальное место, где можно наблюдать за солнечной радиацией, поскольку здесь никогда не бывает солнечных затмений. В настоящее время в области L1 расположены несколько спутников, которые занимаются изучением солнечного ветра. Одним из них является европейский искусственный спутник SOHO.
Что касается этой точки Лагранжа Земля-Луна, то находится она приблизительно в 60 000 км от Луны, и используется в качестве "перевалочного" пункта во время миссий космических кораблей и спутников на Луну и обратно.
Свободная точка L2
Рассуждая аналогично предыдущему случаю, можно сделать вывод, что в системе двух тел вращения за пределами орбиты тела с меньшей массой должна существовать область, где падение центробежной силы компенсируется гравитацией этого тела, что приводит к выравниванию периодов вращения тела с меньшей массой и третьего тела вокруг тела с большей массой. Эта область является свободной точкой L2.
Если рассматривать систему Солнце-Земля, то до этой точки Лагранжа расстояние от планеты будет точно такое же, как и до точки L1, то есть 1,5 млн км, только расположена L2 за Землей и дальше от Солнца. Поскольку в области L2 отсутствует влияние солнечной радиации благодаря земной защите, то ее используют для наблюдений за Вселенной, располагая здесь разные спутники и телескопы.
В системе Земля-Луна точка L2 расположена за естественным спутником Земли на расстоянии от него в 60 000 км. В лунной L2 находятся спутники, которые используются для наблюдений за обратной стороной Луны.
Свободные точки L3, L4 и L5
Точка L3 в системе Солнце-Земля находится за звездой, поэтому с Земли ее нельзя наблюдать. Точка не используется никак, поскольку она является нестабильной из-за влияния гравитации других планет, например, Венеры.
Точки L4 и L5 являются самыми стабильными областями Лагранжа, поэтому практически около каждой планеты в них находятся астероиды или космическая пыль. Например, в этих точках Лагранжа Луны существует только космическая пыль, а в L4 и L5 Юпитера расположены троянские астероиды.
Другие применения свободных точек
Помимо установки спутников и наблюдения за космосом, точки Лагранжа Земли и других планет можно использовать и для космических путешествий. Из теории следует, что перемещения через точки Лагранжа разных планет являются энергетически выгодными и требуют небольших затрат энергий.
Еще одним интересным примером использования точки L1 Земли стал физический проект одного украинского школьника. Он предложил расположить в этой области облако астероидной пыли, которое будет защищать Землю от губительного солнечного ветра. Таким образом, точку можно использовать для воздействия на климат всей голубой планеты.