Глинистые минералы: классификация, состав, свойства и применение

Глинистые минералы представляют собой водные филлосиликаты алюминия, иногда с различными примесями железа, магния, щелочных и щелочноземельных металлов, а также других катионов, обнаруженных на некоторых планетарных поверхностях или вблизи них.

Они образуются в присутствии воды, и когда-то они были важны для появления жизни, потому многие теории абиогенеза учитывают их в роль в этом процессе. Они являются важными составляющими почв и были полезны для человека с древних времен в сельском хозяйстве и производстве.

Образование

Глины образуют плоские шестиугольные листы, похожие на слюды. Глинистые минералы являются распространенными продуктами выветривания (в том числе, выветривания полевого шпата) и низкотемпературными продуктами гидротермального изменения. Они очень распространены в почвах, в мелкозернистых осадочных породах таких, как сланцы, аргиллиты и алевролиты, а также в мелкозернистых метаморфических сланцах и филлитах.

Характеристики

Глинистые минералы, как правило (но не обязательно), имеют ультрамелкозернистый размер. Обычно считается, что они имеют размер менее 2 микрометров при стандартной классификации размеров частиц, поэтому для их идентификации и изучения могут потребоваться специальные аналитические методы. К ним относится дифракция рентгеновских лучей, методы дифракции электронов, различные спектроскопические методы, такие как мессбауэровская спектроскопия, инфракрасная спектроскопия, рамановская спектроскопия и SEM-EDS, или же автоматизированные процессы минералогии. Эти методы могут быть дополнены микроскопией поляризованного света, традиционной техникой, устанавливающей фундаментальные явления или петрологические отношения.

Распространение

Учитывая потребность в воде, глинистые минералы относительно редки в Солнечной системе, хотя они широко распространены на Земле, где вода взаимодействует с другими минералами и органическим веществом. Они также были обнаружены в нескольких местах на Марсе. Спектрография подтвердила их присутствие на астероидах и планетоидах, включая карликовую планету Церера и Темпель 1, а также луну Юпитера Европу.

Классификация

Основные глинистые минералы входят в следующие кластеры:

  • Каолиновая группа, которая включает минералы каолинит, диккит, галлуазит и накрит (полиморфы Al2Si2O5 (OH) 4). Некоторые источники включают группу каолинит-серпентин из-за структурного сходства (Bailey 1980).
  • Смектитовая группа, которая включает диоктаэдрические смектиты, такие как монтмориллонит, нонтронит и бейделлит, и триоктаэдрические смектиты, например, сапонит. В 2013 году аналитические испытания марсоходом Curiosity обнаружили результаты, согласующиеся с присутствием минералов смектитовой глины на планете Марс.
  • Иллитовая группа, в которую входят глинистые слюды. Иллит - единственный распространенный минерал этой группы.
  • Хлоритная группа включает в себя широкий спектр аналогичных минералов со значительной химической вариацией.

Другие виды

Существуют другие типы этих минералов такие, как сепиолит или аттапульгит, глины с длинными водяными каналами, внутренними по своей структуре. Вариации глины смешанного слоя актуальны для большинства вышеупомянутых групп. Упорядочение описывается как случайное или регулярное упорядочение и далее описывается термином «рейхвайт», что в переводе с немецкого означает «диапазон» или «охват». Литературные статьи ссылаются, например, на упорядоченный иллит-смектит R1. Этот тип включается в категорию ISISIS. R0, с другой стороны, описывает случайное упорядочение. Помимо них, также можно найти другие расширенные типы упорядочения (R3 и т. д.). Глинистые минералы смешанного слоя, которые являются совершенными типами R1, часто получают свои собственные названия. R1-упорядоченный хлорит-смектит известен, как корренсит, R1 - иллит-смектит - ректорит.

История изучения

Знания о природе глины, стали более понятными в 1930-х годах с развитием технологий дифракции рентгеновских лучей, необходимых для анализа молекулярной природы глинистых частиц. Стандартизация терминологии возникла и в этот период с особым вниманием к подобным словам, которые привели к путанице, такой как лист и плоскость.

Как и все филлосиликаты, глинистые минералы характеризуются двумерными пластами угловых тетраэдров SiO4 и / или октаэдров AlO4. Листовые блоки имеют химический состав (Al, Si) 3O4. Каждый кремниевый тетраэдр делит 3 своих вершинных атома кислорода с другими тетраэдрами, образуя гексагональную решетку в двух измерениях. Четвертая вершина не является общей с другим тетраэдром, и все тетраэдры «указывают» в одном направлении. Все неразделенные вершины находятся на одной стороне листа.

Структура

В глинах тетраэдрические листы всегда связаны с октаэдрическими, сформированными из небольших катионов, таких как алюминий или магний, и координированы шестью атомами кислорода. Неподеленная вершина из тетраэдрического листа также образует часть одной стороны октаэдрического, но дополнительный атом кислорода расположен над зазором в тетраэдрическом листе в центре шести тетраэдров. Этот атом кислорода связан с атомом водорода, образующим группу ОН в структуре глины.

Глины можно разделить на категории в зависимости от способа упаковки тетраэдрических и октаэдрических листов в слои. Если в каждом слое есть только одна тетраэдрическая и одна октаэдрическая группа, то то она относится к категории 1:1. Альтернатива, известная как глина 2: 1, имеет два тетраэдрических листа с неразделенной вершиной каждого из них, направленной друг к другу и образующей каждую сторону восьмигранного листа.

Соединение между тетраэдрическим и октаэдрическим листами требует, чтобы тетраэдрический лист становился гофрированным или скрученным, вызывая дитригональное искажение гексагональной матрицы, и октаэдрический лист выравнивался. Это минимизирует общие валентные искажения кристаллита.

В зависимости от состава тетраэдрических и октаэдрических листов слой не будет иметь заряда или будет иметь отрицательный. Если слои заряжены, этот заряд уравновешивается межслоевыми катионами, такими как Na + или K +. В каждом случае промежуточный слой также может содержать воду. Кристаллическая структура сформирована из пакета слоев, расположенных между другими слоями.

"Глиняная химия"

Поскольку большинство глин изготовлены из минералов, они обладают высокой биосовместимостью и интересными биологическими свойствами. Из-за формы диска и заряженных поверхностей глина взаимодействует с целым рядом макромолекул таких субстанций, как белок, полимеры, ДНК и т. д. Некоторые из областей применения глин включают доставку лекарств, тканевую инженерию и биопечать.

Глиняная химия является прикладной дисциплиной химии, которая изучает химические структуры, свойства и реакции глины, а также строение и свойства глинистых минералов. Это междисциплинарная область, включающая концепции и знания из неорганической и структурной химии, физической химии, химии материалов, аналитической химии, органической химии, минералогии, геологии и других.

Изучение химии (и физики) глин и строения глинистых минералов имеет большое академическое и промышленное значение, поскольку они относятся к числу наиболее широко используемых промышленных минералов, используемых в качестве сырья (керамика и т. д.), адсорбентов, катализаторов и др.

Важность науки

Уникальные свойства глинистых минералов почв такие, как слоистое строение нанометрового масштаба, наличие фиксированных и взаимозаменяемых зарядов, возможность адсорбирования и удержания (интеркалирования) молекул, способность образовывать стабильные коллоидные дисперсии, возможность индивидуальной модификации поверхности и межслойной химической модификации и другие делают изучение химии глины очень важной и чрезвычайно разнообразной областью исследований.

На многие различные области знаний влияет физико-химическое поведение глинистых минералов, от наук об окружающей среде до химической технологии, от керамики до обращения с ядерными отходами.

Их катионообменная емкость (CEC) имеет большое значение в балансе наиболее распространенных катионов в почве (Na +, K +, NH4 +, Ca2 +, Mg2 +) и контроле pH, что напрямую влияет на плодородие почвы. Изучение глин (и минералов) также играет важную роль в работе с Са2 +, обычно поступающего с суши (речной воды) в моря. Возможность изменять и контролировать состав и содержание минералов предлагает ценный инструмент в разработке селективных адсорбентов с различными применениями такими, как, например, создание химических датчиков или чистящих веществ для загрязненной воды. Эта наука также играет огромную роль в классификации групп глинистых минералов.

Комментарии