Генеральная совокупность и выборка

Совокупность однородных объектов часто исследуют относительно какого-либо признака, характеризующего их, измеренного количественно либо качественно.

К примеру, если имеется партия деталей, то количественным признаком может быть размер детали по ГОСТу, а качественным - стандартность детали.

В случае необходимости их проверки на соответствие стандартам иногда прибегают к сплошному обследованию, но на практике это применяется крайне редко. К примеру, если генеральная совокупность содержит огромное количество изучаемых объектов, то практически невозможно проводить сплошное обследование. В таком случае из всей совокупности отбирают определенное число объектов (элементов) и их исследуют. Таким образом, имеется генеральная и выборочная совокупность.

Генеральной называют совокупность всех объектов, которые подвергаются обследованию или изучению. Генеральная совокупность, как правило, содержит в себе конечное число элементов, но если оно слишком велико, то с целью упрощения математических вычислений допускается, что вся совокупность состоит из бесчисленного числа объектов.

Выборкой или выборочной совокупностью называется часть отобранных элементов из всей совокупности. Выборка может быть повторной либо бесповторной. В первом случае её возвращают в генеральную совокупность, во втором – нет. В практической деятельности чаще используют бесповторный случайный отбор.

Генеральная совокупность и выборка должны быть связаны между собой репрезентативностью. Говоря по другому, для того, чтобы по характеристикам выборочной совокупности можно было уверенно определять признаки всей совокупности, надо, чтобы элементы выборки максимально точно их представляли. Иными словами, выборка должна быть представительной (репрезентативной).

Выборка будет более или менее репрезентативной, если она производится случайно из очень большого числа всей совокупности. Это можно утверждать на основе так называемого закона больших чисел. При этом все элементы имеют равную вероятность попасть в выборку.

Имеются различные варианты отбора. Все эти способы в принципе можно разделить на два варианта:

  • Вариант 1. Отбираются элементы, когда генеральная совокупность не делится на части. К этому варианту можно отнести простой случайный повторный и бесповторный отборы.
  • Вариант 2. Генеральная совокупность разделяется на части и производится отбор элементов. Сюда можно отнести типический, механический и серийный отборы.

Простой случайный - отбор, при котором элементы извлекаются по одному из всей совокупности случайным образом.

Типический – это отбор, при котором элементы отбираются не из всей совокупности, а из всех её «типических» частей.

Механический - это такой отбор, когда всю совокупность разделяют на количество групп, равное числу элементов, которое должно быть в выборке, и, соответственно, из каждой группы выбирается один элемент. К примеру, если надо отобрать 25% деталей, изготовленных станком, то выбирают каждую четвёртую деталь, а если требуется отобрать 4% деталей, то выбирают каждую двадцать пятую деталь и так далее. При этом необходимо сказать, что иногда механический отбор может не обеспечивать достаточной репрезентативности выборки.

Серийный - это такой отбор, при котором элементы отбирают из всей совокупности «сериями», подвергаемыми сплошному исследованию, а не по одному. К примеру, когда детали изготавливаются большим числом станков-автоматов, то сплошное обследование проводится только в отношении продукции нескольких станков. Серийный отбор используют, если исследуемый признак имеет незначительную вариативность в разных сериях.

С целью уменьшения погрешности применяют математико-статистические методы оценки генеральной совокупности с помощью выборочной. Причем выборочный контроль может быть как одноступенчатым, так и многоступенчатым, что повышает надежность обследования.

Комментарии