Движущийся электрический заряд создает какое поле?

То, что движущийся электрический заряд создает вокруг себя, является более сложным, чем то, что свойственно заряду, находящемуся в неподвижном состоянии. В эфире, где пространство не возмущено, заряды уравновешиваются. Поэтому он называется магнитно- и электрически нейтральным.

Рассмотрим более подробно поведение такого заряда отдельно, в сравнении с неподвижным, и подумаем о принципе Галилея, а вместе с тем и о теории Эйнштейна: насколько она состоятельна на самом деле?

движущийся электрический заряд создает

Различие движущегося и неподвижного зарядов

Одиночный заряд, будучи неподвижным, создает электрическое поле, которое можно назвать результатом деформации эфира. А движущийся электрический заряд создает как электрическое, так и магнитное поле. Он обнаруживается только другим зарядом, то есть магнитом. Получается, что покоящийся и движущийся заряды в эфире не эквивалентны друг другу. При равномерном и прямолинейном движении заряд не будет излучать и не будет терять энергию. Но так как часть ее тратится на создание магнитного поля, то энергии у этого заряда станет меньше.

Пример для облегчения понимания

Это легче представить на примере. Если взять два одинаковых неподвижных заряда и расположить их далеко друг от друга, чтобы поля не могли взаимодействовать, один из них оставят как есть, а другой будут перемещать. Для первоначально неподвижного заряда потребуется ускорение, которое будет создавать магнитное поле. Часть энергии этого поля уйдет на электромагнитное излучение, направленное в бесконечное пространство, которое уже не вернется в качестве электродвижущей силы самоиндукции при остановке. С помощью другой части зарядной энергии будет создаваться постоянное магнитное поле (при условии постоянной скорости заряда). Это энергия деформации эфира. При равномерном движении магнитное поле сохранится в постоянном виде. Если при этом сравнить два заряда, то у движущегося будет наблюдаться меньшее количество энергии. Всему виной электромагнитное поле движущегося заряда, на которое ему приходится тратить энергию.

электромагнитное поле движущегося заряда

Таким образом, становится понятным, что в обоих зарядах состояние и энергия сильно отличаются. Электрическое поле действует на неподвижные и на движущиеся заряды. Но на последний влияет и магнитное поле. Поэтому и энергия, и потенциал у него меньше.

Движущиеся заряды и принцип Галилея

Состояние обоих зарядов можно также отследить в подвижном и неподвижном физическом теле, которое не имеет движущихся заряженных частиц. И принцип Галилея здесь может быть объективно провозглашен: физическое и нейтральное к электричеству тело, которое двигается равномерно и прямолинейно, неотличимо от того, что находится в покое по отношению к Земле. Получается, что нейтральные к электричеству тела и заряженные проявляют себя по-разному в состоянии покоя и в движении. Принцип Галилея не может использоваться в эфире и не может применяться к подвижным и неподвижным заряженным телам.

Несостоятельность принципа для заряженных тел

движущиеся заряды и принцип Галилея

Теорий и работ о тех полях, что создает движущийся электрический заряд, сегодня накопилось немало. К примеру, Хэвисайд показал, что электрический вектор, образованный зарядом, является радиальным повсюду. Силовые магнитные линии, которые образованы точечным зарядом при движении, являются кругами, а в их центрах находятся линии движения. Другой ученый, Серл, решил задачу о распределении заряда в сфере, пребывающей в движении. Было выяснено, что оно порождает поле, подобное тому, что и движущийся электрический заряд создает, несмотря на то что последний — не сфера, а сжатый сфероид, в котором полярная ось направлена в сторону движения. Позже Мортон показал, что в наэлектризованной сфере, пребывающей в движении, плотность на поверхности меняться не будет, однако силовые линии уже не будут ее покидать под углом в 90 градусов.

Энергия, окружающая сферу, становится больше при ее движении, чем в то время, когда сфера покоится. Это происходит потому, что кроме электрического поля, вокруг движущейся сферы также появляется магнитное поле, как и в случае с зарядом. Поэтому, чтобы выполнить работу, скорость для заряженной сферы потребуется большая, чем для той, что является нейтральной электрически. Вместе с зарядом возрастет и эффективная масса сферы. Авторы уверены, что это происходит из-за самоиндукции конвекционного тока, который движущийся электрический заряд создает с начала движения. Таким образом, принцип Галилея признается несостоятельным для заряженных электричеством тел.

действует на неподвижные и на движущиеся заряды

Идеи Эйнштейна и эфир

Тогда становится понятным и то, почему Эйнштейн не выделял место эфиру в СТО. Ведь сам факт признания наличия эфира уже разрушает принцип, заключающийся в эквивалентности инерциальных и независимых систем отсчета. А он, в свою очередь, и является основой СТО.

Статья закончилась. Вопросы остались?
Комментарии 0
Подписаться
Я хочу получать
Правила публикации
Редактирование комментария возможно в течении пяти минут после его создания, либо до момента появления ответа на данный комментарий.