История чисел и система счисления, позиционные системы (кратко)
История чисел и система счисления тесно взаимосвязаны, потому что система счисления и представляет собой способ записи такого абстрактного понятия, как число. Данная тема не относится сугубо к области математики, ведь всё это является важной частью культуры народа в целом. Потому, когда разбирается история чисел и систем счисления, кратко затрагиваются и многие другие аспекты истории создавших их цивилизаций. Системы в целом делятся на позиционные, непозиционные и смешанные. Из их чередования состоят вся история чисел и систем счисления. Позиционные системы – это такие, в которых величина, обозначаемая цифрой в записи числа, зависит от ее позиции. В непозиционных системах, соответственно, такой зависимости нет. Человечеством созданы и смешанные системы.
Изучение систем счисления в школе
Сегодня урок «История чисел и систем счисления» проводится в 9 классе в рамках курса по информатике. Главное практическое его значение – научить переводить числа из одной системы счисления в другую (прежде всего из десятиричной в двоичную). Однако история чисел и систем счисления является органической частью истории в целом и вполне могла бы дополнить также и этот предмет школьной программы. Также это могло бы улучшить пропагандируемый сегодня междисциплинарный подход. В рамках общего курса истории в принципе могла бы изучаться не только история экономического развития, социально-политических движений, правлений и войн, но и в небольшой степени история чисел и систем счисления. 9 класс в курсе информатики в таком случае можно было бы в части перевода чисел из одной системы в другую снабдить значительно большим число примеров из ранее пройденного материала. А примеры эти не лишены увлекательности, что и будет показано ниже.
Возникновение систем счисления
Сложно сказать, когда, а главное, как человек научился считать (так же, как невозможно доподлинно выяснить, когда, а главное, как возник язык). Известно только, что все древние цивилизации уже имели свои системы счёта, значит, история чисел и система счисления зародились в доцивилизационное время. Камни и кости не способны рассказать нам, что происходило в человеческом сознании, а письменных источников тогда ещё не создавали. Возможно, счёт понадобился человеку при разделе добычи или много позже, уже в ходе неолитической революции, то есть при переходе к земледелию, для раздела участков поля. Любые теории на этот счёт будут в равной степени беспочвенными. Но некоторые предположения всё же можно сделать, изучая историю различных языков.
Следы древнейшей системы счисления
Самая логичная начальная система счёта – противопоставление понятий «один» – «много». Логична она для нас потому, что в современном русском языке существует только единственное и множественное число. Но во многих древних языках было также и двойственное число для обозначения двух предметов. Существовало оно и в первых индоевропейских языках, включая древнерусский. Таким образом, история чисел и система счисления начались с разделения понятий «один», «два», «много». Однако уже в самых древних известных нам цивилизациях были разработаны более детальные системы счисления.
Месопотамская запись чисел
Интересно то, что записывались знаки этой шестидесятиричной системы, будто она десятиричная – существовало только два знака (для обозначения единицы и десятка, не шести и не шестидесяти, а именно десятка), цифры получали, комбинируя эти знаки. Страшно себе даже вообразить, как сложно было записать сколько-нибудь большое число таким способом.
Древнеегипетская система счисления
Эллинские буквы в математических записях
Славянская система счисления как наследница эллинской
Аттическое упрощение
Эллинские учёные достигли огромных высот. Римское завоевание не прервало их изысканий. Например, судя по косвенным свидетельствам, Аристарх Самосский за 18 веков до Коперника разработал Гелиоцентрическую систему мира. Во всех этих сложных расчётах эллинским учёным помогала их система записи чисел.
Но для простых людей, например, торговцев, система зачастую оказывалась слишком сложной: чтобы её использовать, требовалось запомнить числовые значения 27 букв (вместо числовых значений 10 символов, которые учат современные школьники). Потому появилась упрощённая система, получившая название аттической (Аттика – область Эллады, одно время лидировавшая в регионе в целом и особенно в морской торговле региона, так как столицей Аттики были знаменитые Афины). В этой системе отдельными буквами стали обозначаться только числа один, пять, десять, сто, тысяча и десять тысяч. Получается всего шесть знаков – их гораздо легче запоминать, а слишком сложных вычислений торговцы всё равно не производили.
Римские цифры
Римскую систему записи чисел нельзя назвать особо совершенной. В частности, она гораздо более примитивна, чем древнерусская. Но исторически сложилось так, что она до сих пор сохраняется наравне с арабскими (так называемыми) цифрами. И забывать эту альтернативную систему, переставать её использовать не стоит. В частности, сегодня часто арабскими цифрами обозначаются количественные числительные, а римскими – порядковые.
Великое древнеиндийское изобретение
Распространение индийской системы счисления по Земле
Предположительно в IX веке индийские цифры заимствовали арабы. В то время как европейцы пренебрежительно относились к античному наследию, а в некоторые регионах одно время даже намеренно уничтожали его как языческое, арабы бережно хранили достижения древних греков и римлян. С самого начала их завоеваний ходовым товаром стали переводы античных авторов на арабский. В основном через трактаты арабских учёных средневековые европейцы снова обрели наследие древних мыслителей. Вместе с этими трактатами пришли и индийские цифры, которые в Европе стали называть арабскими. Они не сразу были приняты, потому что для большинства людей оказались менее понятными, чем римские. Но постепенно удобство математических расчётов с помощью этих знаков победило невежественность. Лидерство европейских промышленно развитых стран привело к тому, что так называемые арабские цифры распространились по всему миру и сегодня применяются практически повсеместно.