Беспроводная передача электроэнергии: история, технологии, оборудование
Беспроводная передача для доставки электричества имеет возможность поставлять основные достижения в области промышленности и приложениях, зависящих от физического контакта разъема. Оно, в свою очередь, может быть ненадежным и привести к неудачам. Передача беспроводной электроэнергии была впервые продемонстрирована Никола Тесла в 1890-х годах. Однако только в последнее десятилетие технология была использована до такой степени, что она предлагает реальные, ощутимые преимущества для приложений реального мира. В частности, развитие резонансной беспроводной системы питания для рынка бытовой электроники показало, что зарядка по индукции обеспечивает новые уровни удобства для миллионов повседневных устройств.
Рассматриваемая мощность широко известна многими терминами. Включая индуктивную передачу, связь, резонансную беспроводную сеть и такую же отдачу напряжения. Каждое из этих условий, по существу, описывает один и тот же фундаментальный процесс. Беспроводную передачу электроэнергии или мощности от источника питания до напряжения нагрузки без разъемов через воздушный зазор. Основой являются две катушки – передатчика и приемника. Первая возбуждается переменным током для генерации магнитного поля, которое, в свою очередь, индуцирует напряжение во второй.
Как работает рассматриваемая система
Основы беспроводной мощности включают раздачу энергии от передатчика к приемнику через колебательное магнитное поле. Для достижения этого постоянный ток, подаваемый источником питания, преобразуется в высокочастотный переменный. С помощью специально разработанной электроники, встроенной в передатчик. Переменный ток активирует катушку медного провода в раздатчике, которая генерирует магнитное поле. Когда вторая (приемная) обмотка размещается в непосредственной близости. Магнитное поле может вызывать переменный ток в принимающей катушке. Электроника в первом устройстве затем преобразует переменный обратно в постоянный, который становится потребляемой мощностью.
Схема беспроводной передачи электроэнергии
Напряжение «сети» преобразуется в сигнал переменного тока, который затем посылается на катушку передатчика через электронную цепь. Протекающий через обмотку раздатчика, индуцирует магнитное поле. Оно, в свою очередь, может распространяться на катушку приемника, которая находится в относительной близости. Затем магнитное поле генерирует ток, протекающий через обмотку приемного устройства. Процесс, посредством которого энергия распространяется между передающей и приемной катушками, также упоминается как магнитная или резонансная связь. И достигается с помощью обеих обмоток, функционирующих на той же частоте. Ток, текущий в катушке приемника, преобразуется в постоянный с помощью схемы приемника. Затем может использоваться для питания устройства.
Что значит резонанс
Расстояние, на которое может передаваться энергия (или мощность), увеличивается, если катушки передатчика и приемника резонируют на одной и той же частоте. Подобно тому, как настраиваемая вилка колеблется на определенной высоте и может достигать максимальной амплитуды. Это относится к частоте, с которой объект естественным образом вибрирует.
Преимущества беспроводной передачи
В чем заключаются преимущества? Плюсы:
- сокращаются расходы, связанные с поддержанием прямых соединителей (например, в традиционном промышленном скользком кольце);
- большее удобство для зарядки обычных электронных устройств;
- безопасная передача в приложения, которые должны оставаться герметически закрытыми;
- электроника может быть полностью скрыта, что снижает риск коррозии из-за таких элементов как кислород и вода;
- надежная и последовательная подача питания на вращающееся, высокомобильное промышленное оборудование;
- обеспечивает надежную передачу мощности в критически важные системы во влажной, грязной и движущейся среде.
Независимо от приложения, ликвидация физического соединения обеспечивает ряд преимуществ по сравнению с традиционными разъемами питания кабеля.
Эффективность рассматриваемой передачи энергии
Общая эффективность беспроводной системы питания является самым важным фактором в определении ее производительности. Результативность системы измеряет количество мощности, передаваемой между источником питания (то есть, настенной розеткой) и принимающим устройством. Это, в свою очередь, определяет такие аспекты как скорость зарядки и дальность распространения.
Системы беспроводной связи различаются в зависимости от их уровня эффективности, основанного на таких факторах, как конфигурация и дизайн катушки, расстояние передачи. Менее результативное устройство будет генерировать больше выбросов и приведет к меньшей мощности, проходящей через приемное устройство. Как правило, беспроводные технологии передачи электроэнергии для таких устройств как смартфоны, могут достигать 70% производительности.
Как измеряется эффективность
В смысле, как количество мощности (в процентах), которое передается от источника питания к приемному устройству. То есть, беспроводная передача электроэнергии для смартфона с КПД 80% означает, что 20% входной мощности потеряно между настенной розеткой и батареей для заряжаемого гаджета. Формула для измерения эффективности работы: производительность = постоянный ток исходящий, деленный на входящий, полученный результат умножить на 100%.
Беспроводные способы передачи электроэнергии
Мощность может распространяться по рассматриваемой сети почти по всем неметаллическим материалам, включая, но не ограничиваясь ими. Это такие твердые вещества, как древесина, пластмасса, текстиль, стекло и кирпич, а также газы и жидкости. Когда металлический или электропроводящий материал (то есть, углеродное волокно) помещается в непосредственной близости от электромагнитного поля, объект поглощает мощность из него и в результате нагревается. Это, в свою очередь, влияет на эффективность системы. Вот как работают индукционные приготовления, к примеру, неэффективная передача мощности из варочной панели создает тепло для приготовления пищи.
Чтобы создать систему беспроводной передачи электроэнергии, необходимо вернуться к истокам рассматриваемой темы. А ,точнее, к успешному ученому и изобретателю Никола Тесла, который создал и запатентовал генератор, способный брать питание без различных материалистических проводников. Итак, для реализации беспроводной системы необходимо собрать все важные элементы и части, в результате будет реализована небольшая катушка Тесла. Это устройство, которое создает электрическое поле высокого напряжения в воздухе, вокруг него. При этом имеется небольшая входная мощность, она обеспечивает беспроводную передачу энергии на расстоянии.
Одним из наиболее важных способов передачи энергии является индуктивная связь. Он в основном используется для ближнего поля. Охарактеризован на том факте, что при прохождении тока по одному проводу на концах другого индуцируется напряжение. Передача мощности осуществляется путем взаимности между двумя материалами. Общий пример – это трансформатор. Микроволновая передача энергии, как идея, была разработана Уильямом Брауном. Вся концепция включает в себя преобразование питания переменного тока в радиочастотное и передачу его в пространстве и повторное в переменную мощность на приемнике. В этой системе напряжение генерируется с использованием микроволновых источников энергии. Таких как клистрон. И эта мощность передается передающей антенне через волновод, который защищает от отраженной мощности. А также тюнер, который соответствует импедансу микроволнового источника с другими элементами. Приемная секция состоит из антенны. Она принимает мощность микроволн и схему согласования импеданса и фильтра. Эта приемная антенна вместе с выпрямляющим устройством может быть диполем. Соответствует выходному сигналу с подобным звуковым оповещением выпрямительного блока. Блок приемника также состоит из подобной секции, состоящей из диодов, которые используются для преобразования сигнала в оповещение постоянного тока. Эта система передачи использует частоты в диапазоне от 2 ГГц до 6 ГГц.
Беспроводная передача электроэнергии с помощью качера Бровина, который реализовал генератор с применением подобных магнитных колебаний. Суть заключается в том, что это устройство работало благодаря трем транзисторам.
Использование пучка лазера для передачи мощности в виде световой энергии, которая преобразуется в электрическую на приемном конце. Непосредственно сам материал получает питание с использованием источников, таких как Солнце или любой генератор электроэнергии. И, соответственно, реализует фокусированный свет высокой интенсивности. Размер и форма пучка определяются набором оптики. И этот передаваемый лазерный свет принимается фотогальваническими ячейками, которые преобразуют его в электрические сигналы. Он обычно использует оптоволоконные кабели для передачи. Как и в базовой солнечной энергетической системе, приемник, используемый в распространении на основе лазера, представляет собой массив фотоэлектрических элементов или солнечной панели. Они, в свою очередь, могут преобразовывать бессвязный монохроматический свет в электричество.
Сущностные особенности работы устройства
Мощность катушки Тесла заключается в процессе, называемом электромагнитной индукцией. То есть, изменяющееся поле создает потенциал. Он заставляет протекать ток. Когда электричество течет через катушку провода, он генерирует магнитное поле, которое заполняет область вокруг обмотки определенным образом. В отличие от некоторых других экспериментов с высоким напряжением, катушка Тесла выдержала множество проверок и проб. Процесс был достаточно трудоемким и длительным, но результат был успешным, потому и удачно запатентован ученым. Создать подобную катушку можно при наличии определенных составляющих. Для реализации потребуются следующие материалы:
- длина 30 см ПВХ (чем больше, тем лучше);
- медная эмалированная проволока (вторичный провод);
- березовая доска для основания;
- 2222A транзистор;
- подсоединение (первичный) провод;
- резистор 22 кОм;
- переключатели и соединительные провода;
- аккумулятор 9 вольт.
Этапы реализации устройства Тесла
Для начала необходимо поместить небольшой слот в верхнюю часть трубы, чтобы обернуть один конец провода вокруг. Медленно и осторожно обматывать катушку, следя за тем, чтобы не перекрывать провода и, при этом, не создавать пробелов. Этот шаг – самая сложная и утомительная часть, но потраченное время даст очень качественную и хорошую катушку. Каждые 20, или около того, поворотов помещаются кольца маскирующей ленты вокруг обмотки. Они выступают в качестве барьера. В случае, если катушка начнет распутываться. По завершении нужно обернуть плотную ленту вокруг верхней и нижней части обмотки и распылить ее 2 или 3 слоями эмали.
Затем необходимо подключить первичный и вторичный аккумулятор к батарее. После - включить транзистор и резистор. Меньшая обмотка является основной, а более длительная обмотка – вторичной. Можно дополнительно установить алюминиевую сферу сверху трубы. Кроме того, соединить открытый конец вторичной с добавленной, которая будет действовать как антенна. Необходимо создавать все с тщательной осторожностью, чтобы не дотрагиваться до вторичного устройства при включении питания.
При самостоятельной реализации существует опасность возгорания. Нужно перевернуть выключатель, установить лампу накаливания рядом с беспроводным устройством передачи энергии и наслаждаться световым шоу.
Беспроводная передача через систему солнечной энергии
Традиционные проводные конфигурации реализации энергии обычно требуют наличия проводов между распределенными устройствами и потребительскими единицами. Это создает множество ограничений как стоимость системных затрат на кабели. Потери, понесенные в передаче. А также растраты в распределении. Только сопротивление линии передачи приводит к потере около 20-30% генерируемой энергии.
Одна из самых современных беспроводных систем передачи энергии основана на передаче солнечной энергии с использованием микроволновой печи или луча лазера. Спутник размещен на геостационарной орбите и состоит из фотоэлектрических элементов. Они преобразуют солнечный свет в электрический ток, который используется для питания микроволнового генератора. И, соответственно, реализует мощность микроволн. Это напряжение передается с использованием радиосвязи и принимается на базовой станции. Она представляет собой комбинацию антенны и выпрямителя. И преобразуется обратно в электричество. Требует питания переменного или постоянного тока. Спутник может передавать до 10 МВт мощности радиочастоты.
Если говорить о системе распространения постоянного тока, то даже это невозможно. Так как для этого требуется разъем между источником питания и устройством. Существует такая картина: система полностью лишена проводов, где можно получить мощность переменного тока в домах без каких-либо дополнительных устройств. Там, где есть возможность зарядить свой мобильный телефон без необходимости физически подключаться к гнезду. Конечно, такая система возможна. И множество современных исследователей пытаются создать нечто модернизированное, при этом, изучив роль разработки новых способов беспроводной передачи электроэнергии на расстоянии. Хотя, с точки зрения экономической составляющей, для государств это будет не совсем выгодно, если внедрять такие устройства повсеместно, и заменять стандартное электричество на природное.
Истоки и примеры беспроводных систем
Эта концепция, на самом деле, не является новой. Вся эта идея была разработана Николасом Тесла в 1893 году. Когда он разработал систему освещающих вакуумных ламп с использованием техники беспроводной передачи. Невозможно себе представить, чтобы мир существовал без различных источников зарядки, которые выражены в материальном виде. Чтобы стали возможными мобильные телефоны, домашние роботы, MP3-плееры, компьютер, ноутбуки и другие транспортируемые гаджеты, которые заряжались бы самостоятельно, без каких-либо дополнительных подключений, освобождая пользователей от постоянных проводов. Некоторые из этих устройств могут даже не требовать большого количества элементов. История беспроводной передачи энергии достаточно насыщена, причем, в основном, благодаря разработкам Тесла, Вольта и др. Но, сегодня это остается лишь данными в физической науке.
Основной принцип заключается в преобразовании питания переменного тока в постоянное напряжение с помощью выпрямителей и фильтров. А затем - в возращение в исходное значение на высокой частоте с использованием инверторов. Эта низковольтная с высшими колебаниями мощность переменного тока затем переходит от первичного трансформатора к вторичному. Преобразуется в постоянное напряжение с использованием выпрямителя, фильтра и регулятора. Сигнал переменного тока становится прямым благодаря звуку тока. А также использованию секции выпрямителя моста. Полученный сигнал постоянного тока проходит через обмотку обратной связи, которая действует как схема генератора. При этом заставляет транзистор его проводить в первичный преобразователь в направлении слева направо. Когда ток проходит через обмотку обратной связи, соответствующий ток протекает к первичной части трансформатора в направлении справа налево.
Таким образом работает ультразвуковой способ передачи энергии. Сигнал формируется через первичный преобразователь для обоих полупериодов оповещения переменного тока. Частота звука зависит от количественных показателей колебаний цепей генератора. Этот сигнал переменного тока появляется на вторичной обмотке трансформатора. А когда он подключен к первичному преобразователю другого объекта, напряжение переменного тока составляет 25 кГц. Появляется показание через него в понижающем трансформаторе.
Это напряжение переменного тока выравнивается с помощью мостового выпрямителя. И затем фильтруется и регулируется, чтобы получить выход 5 В для управления светодиодом. Выходное напряжение 12 В от конденсатора используется для питания двигателя вентилятора постоянного тока для его работы. Итак, с точки зрения физики, передача электроэнергии - достаточно развитая область. Однако, как показывает практика, беспроводные системы не до конца развиты и усовершенствованы.