Поверхностное натяжение воды – все дело в границе
Кап, кап... Вот очередная капля собралась на носике крана, набухла и сорвалась вниз. Подобная картина знакома любому. Или теплый летний дождик поливает истосковавшуюся по влаге землю – и опять капли. А почему именно капли? В чем здесь причина? Все очень просто: причиной этого является поверхностное натяжение воды.
Это одно из свойств воды или, если говорить в общем, всех жидкостей. Как известно, газ заполняет весь объём, в который попадает, а вот жидкость этого сделать не может. Молекулы, находящиеся внутри объема воды, окружены такими же молекулами со всех сторон. А вот находящиеся на поверхности, на границе жидкости и газа, испытывают воздействие не со всех сторон, а только со стороны тех молекул, которые расположены внутри объема, со стороны газа на них воздействия нет.
При этом на поверхности жидкости будет действовать сила, направленная вдоль нее перпендикулярно к тому участку поверхности, на который она действует. В результате действия этой силы и возникает поверхностное натяжение воды. Внешним его проявлением будет образование подобия невидимой, упругой пленки на границе раздела. Вследствие воздействия поверхностного натяжения капля воды примет форму сферы как тела, имеющего наименьшую площадь при заданном объеме.
Теперь можно определить, что поверхностное натяжение – это работа по изменению поверхности жидкости. С другой стороны его можно определить как энергию, необходимую для разрыва единицы поверхности. Поверхностное натяжение возможно на границе жидкости и газа. Оно определяется силой, действующей между молекулами, и значит, ответственной за летучесть (испаряемость). Чем меньше величина поверхностного натяжения, тем более летучей будет жидкость.
Можно определить, чему равно поверхностное натяжение. Формула для его вычисления включает в себя площадь поверхности и коэффициент поверхностного натяжения. Как уже упоминалось раньше, коэффициент не зависит от формы и величины поверхности, а определяется силой межмолекулярного взаимодействия, т.е. типом жидкости. Для разных жидкостей его величина будет различной.
Поверхностное натяжение воды можно менять. Это достигается нагреванием, добавлением биологически активных веществ – таких, как мыло, порошок, паста. Его величина зависит от степени чистоты воды. Чем чище вода, тем величина поверхностного натяжения больше, и она по своему значению уступает только ртути.
Любопытный эффект наблюдается, когда жидкость соприкасается и с твердым веществом, и с газом. Если мы нанесем каплю воды на поверхность парафина, то она примет форму шарика. Это вызвано тем, что силы, действующие между парафином и каплей, меньше, чем взаимодействие между собой молекул воды, в результате чего и появляется шарик. Когда силы, действующие между поверхностью и каплей, будут больше, чем силы межмолекулярного взаимодействия, то вода равномерно растечется по поверхности. Это явление называется смачиванием.
Эффект смачиваемости в какой-то степени может характеризовать степень чистоты поверхности. На чистой поверхности капля растекается равномерно, а если поверхность загрязнена или покрыта веществом, не смачиваемым водой, то последняя собирается в шарики.
Как пример использования поверхностного натяжения в промышленности можно привести отливку сферических деталей, например, дроби для ружей. Капли расплавленного металла просто застывают на лету, принимая шарообразную форму.
Поверхностное натяжение воды, как и любой другой жидкости, является одним из важных ее параметров. Оно определяет некоторые характеристики жидкости – такие, как летучесть (испаряемость) и смачиваемость. Его значение зависит только от параметров межмолекулярного взаимодействия.