Выпуклые многоугольники. Определение выпуклого многоугольника. Диагонали выпуклого многоугольника

Данные геометрические фигуры окружают нас повсюду. Выпуклые многоугольники бывают природными, например, пчелиные соты или искусственными (созданными человеком). Эти фигуры используются в производстве различных видов покрытий, в живописи, архитектуре, украшениях и т.д. Выпуклые многоугольники обладают тем свойством, что все их точки располагаются по одну сторону от прямой, что проходит через пару соседних вершин этой геометрической фигуры. Существуют и другие определения. Выпуклым называется тот многоугольник, который расположен в единой полуплоскости относительно любой прямой, содержащей одну из его сторон.

Выпуклые многоугольники

Выпуклые многоугольники
В курсе элементарной геометрии всегда рассматриваются исключительно простые многоугольники. Чтобы понять все свойства таких геометрических фигур необходимо разобраться с их природой. Для начала следует уяснить, что замкнутой называется любая линия, концы которой совпадают. Причем фигура, образованная ею, может иметь самые разные конфигурации. Многоугольником называют простую замкнутую ломаную линию, у которой соседние звенья не располагаются на одной прямой. Ее звенья и вершины являются, соответственно, сторонами и вершинами этой геометрической фигуры. Простая ломаная не должна иметь самопересечений.

Вершины многоугольника называют соседними, в том случае если они представляют собой концы одной из его сторон. Геометрическая фигура, у которой имеется n-е число вершин, а значит, и n-е количество сторон, называется n-угольником. Саму ломаную линию называют границей или контуром этой геометрической фигуры. Многоугольной плоскостью или плоским многоугольником называют конечную часть любой плоскости, им ограниченной. Соседними сторонами этой геометрической фигуры называют отрезки ломаной линии, исходящие из одной вершины. Они будут не соседними, если исходят их разных вершин многоугольника.

Другие определения выпуклых многоугольников

Определение выпуклого многоугольника
В элементарной геометрии существует еще несколько эквивалентных по своему значению определений, указывающих на то, какой многоугольник называется выпуклым. Причем все эти формулировки в одинаковой степени верны. Выпуклым считается тот многоугольник, у которого:

• каждый отрезок, что соединяет две любые точки внутри него, полностью лежит в нем;

• внутри него лежат все его диагонали;

• любой внутренний угол не превышает 180°.

Многоугольник всегда разбивает плоскость на 2 части. Одна из них – ограниченная (она может быть заключена в круг), а другая - неограниченная. Первую называют внутренней областью, а вторую – внешней областью этой геометрической фигуры. Данный многоугольник является пересечением (иными словами - общей составляющей) нескольких полуплоскостей. При этом каждый отрезок, имеющий концы в точках, которые принадлежат многоугольнику, полностью принадлежит ему.

Разновидности выпуклых многоугольников

Каждый угол выпуклого многоугольника
Определение выпуклого многоугольника не указывает на то, что их существует множество видов. Причем у каждого из них имеются определенные критерии. Так, выпуклые многоугольники, у которых есть внутренний угол равный 180°, называются слабовыпуклыми. Выпуклая геометрическая фигура, что имеет три вершины, называется треугольником, четыре - четырехугольником, пять - пятиугольником и т. д. Каждый из выпуклых n-угольников отвечает следующему важнейшему требованию: n должно равняться или быть больше 3. Каждый из треугольников является выпуклым. Геометрическая фигура данного типа, у которой все вершины располагаются на одной окружности, называется вписанной в окружность. Выпуклый многоугольник называют описанным, если все его стороны около окружности прикасаются к ней. Два многоугольника называют равными только в том случае, когда при помощи наложения их можно совместить. Плоским многоугольником называют многоугольную плоскость (часть плоскости), что ограничена этой геометрической фигурой.

Правильные выпуклые многоугольники

Сумма углов выпуклого многоугольника
Правильными многоугольниками называют геометрические фигуры с равными углами и сторонами. Внутри них имеется точка 0, которая находится на одинаковом расстоянии от каждой из его вершин. Ее называют центром этой геометрической фигуры. Отрезки, соединяющие центр с вершинами этой геометрической фигуры называют апофемами, а те, что соединяют точку 0 со сторонами – радиусами.

Правильный четырехугольник – квадрат. Правильный треугольник называют равносторонним. Для таких фигур существует следующее правило: каждый угол выпуклого многоугольника равен 180° * (n-2)/ n,

где n – число вершин этой выпуклой геометрической фигуры.

Площадь любого правильного многоугольника определяют по формуле:

S = р * h,

где p равно половине суммы всех сторон данного многоугольника, а h равно длине апофемы.

Свойства выпуклых многоугольников

Количество диагоналей выпуклого многоугольника
Выпуклые многоугольники имеют определенные свойства. Так, отрезок, который соединяет любые 2 точки такой геометрической фигуры, обязательно располагается в ней. Доказательство:

Предположим, что Р – данный выпуклый многоугольник. Берем 2 произвольные точки, например, А, В , которые принадлежат Р. По существующему определению выпуклого многоугольника эти точки расположены в одной стороне от прямой, что содержит любую сторону Р. Следовательно, АВ также имеет это свойство и содержится в Р. Выпуклый многоугольник всегда возможно разбить на несколько треугольников абсолютно всеми диагоналями, которые проведены из одной его вершины.

Углы выпуклых геометрических фигур

Углы выпуклого многоугольника – это углы, что образованы его сторонами. Внутренние углы находятся во внутренней области данной геометрической фигуры. Угол, что образован его сторонами, которые сходятся в одной вершине, называют углом выпуклого многоугольника. Углы, смежные с внутренними углами данной геометрической фигуры, называют внешними. Каждый угол выпуклого многоугольника, расположенный внутри него, равен:

180° - х,

где х – величина внешнего угла. Эта простая формула действует в отношении любых геометрических фигур такого типа.

В общем случае, для внешних углов существует следующие правило: каждый угол выпуклого многоугольника равен разности между 180° и величиной внутреннего угла. Он может иметь значения в пределах от -180° до 180°. Следовательно, когда внутренний угол составляет 120°, внешний будет иметь величину в 60°.

Сумма углов выпуклых многоугольников

Сумма внутренних углов выпуклого многоугольника
Сумма внутренних углов выпуклого многоугольника устанавливается по формуле:

180° * (n-2),

где n – число вершин n-угольника.

Сумма углов выпуклого многоугольника вычисляется довольно просто. Рассмотрим любую такую геометрическую фигуру. Для определения суммы углов внутри выпуклого многоугольника необходимо соединить одну из его вершин с другими вершинами. В результате такого действия получается (n-2) треугольника. Известно, что сумма углов любых треугольников всегда равна 180°. Поскольку их количество в любом многоугольнике равняется (n-2), сумма внутренних углов такой фигуры равняется 180° х (n-2).

Сумма углов выпуклого многоугольника, а именно любых двух внутренних и смежных с ними внешних углов, у данной выпуклой геометрической фигуры всегда будет равна 180°. Исходя из этого, можно определить сумму всех ее углов:

180 х n.

Сумма внутренних углов составляет 180° * (n-2). Исходя из этого, сумму всех внешних углов данной фигуры устанавливают по формуле:

180° * n-180°-(n-2)= 360°.

Сумма внешних углов любого выпуклого многоугольника всегда будет равна 360° (независимо от количества его сторон).

Внешний угол выпуклого многоугольника в общем случае представляется разностью между 180° и величиной внутреннего угла.

Другие свойства выпуклого многоугольника

Помимо основных свойств данных геометрических фигур, у них есть и другие, которые возникают при манипуляциях с ними. Так, любой из многоугольников может быть разделен на несколько выпуклых n-угольников. Для этого необходимо продолжить каждую из его сторон и разрезать эту геометрическую фигуру вдоль этих прямых линий. Разбить любой многоугольник на несколько выпуклых частей можно и таким образом, чтобы вершины каждого из кусков совпадали со всеми его вершинами. Из такой геометрической фигуры можно очень просто сделать треугольники путем проведения всех диагоналей из одной вершины. Таким образом, любой многоугольник, в конечном счете, можно разбить на определенное количество треугольников, что оказывается весьма полезным при решении различных задач, связанных с такими геометрическими фигурами.

Периметр выпуклого многоугольника

Отрезки ломаной линии, называемые сторонами многоугольника, чаще всего обозначаются следующими буквами: ab, bc, cd, de, ea. Это стороны геометрической фигуры с вершинами a, b, c, d, e. Сумма длины всех сторон этого выпуклого многоугольника называют его периметром.

Окружность многоугольника

Выпуклые многоугольники могут быть вписанными и описанными. Окружность, касающаяся всех сторон этой геометрической фигуры, называется вписанной в нее. Такой многоугольник называют описанным. Центр окружности, которая вписана в многоугольник, представляет собой точку пересечения биссектрис всех углов внутри данной геометрической фигуры. Площадь такого многоугольника равняется:

S = p * r,

где r – радиус вписанной окружности, а p – полупериметр данного многоугольника.

Окружность, содержащую вершины многоугольника, называют описанной около него. При этом данная выпуклая геометрическая фигура называется вписанной. Центр окружности, которая описана около такого многоугольника, представляет собой точку пересечения так называемых серединных перпендикуляров всех сторон.

Диагонали выпуклых геометрических фигур

Диагонали выпуклого многоугольника
Диагонали выпуклого многоугольника – это отрезки, которые соединяют не соседние вершины. Каждая из них лежит внутри этой геометрической фигуры. Число диагоналей такого n-угольника устанавливается по формуле:

N = n (n – 3)/ 2.

Число диагоналей выпуклого многоугольника играет важную роль в элементарной геометрии. Число треугольников (К), на которые возможно разбить каждый выпуклый многоугольник, вычисляется по следующей формуле:

К = n – 2.

Количество диагоналей выпуклого многоугольника всегда зависит от числа его вершин.

Разбиение выпуклого многоугольника

В некоторых случаях для решения геометрических задач необходимо разбить выпуклый многоугольник на несколько треугольников с непересекающимися диагоналями. Эту проблему можно решить путем выведения определенной формулы.

Определение задачи: назовем правильным некое разбиение выпуклого n-угольника на несколько треугольников диагоналями, пересекающимися только в вершинах этой геометрической фигуры.

Решение: Предположим, что Р1, Р2 , Р3 … , Pn – вершины этого n-угольника. Число Xn - количество его разбиений. Внимательно рассмотрим полученную диагональ геометрической фигуры Pi Pn. В любом из правильных разбиений Р1 Pn принадлежит определенному треугольнику Р1 Pi Pn, у которого 1<i<n. Исходя из этого и полагая, что і = 2,3,4 … , n-1, получается (n-2) группы этих разбиений, в которые включаются все возможные частные случаи.

Пусть і = 2 будет одной группой правильных разбиений, всегда содержащей диагональ Р2 Pn. Количество разбиений, которые входят в нее, совпадает с числом разбиений (n-1)-угольника Р2 Р3 Р4… Pn. Иными словами, оно равняется Xn-1.

Если і = 3, то эта другая группа разбиений будет всегда содержать диагонали Р3 Р1 и Р3 Pn. При этом количество правильных разбиений, что содержатся в данной группе, будет совпадать с числом разбиений (n-2)-угольника Р3 Р4… Pn. Другими словами, оно будет равняться Xn-2.

Пусть і = 4, тогда среди треугольников правильное разбиение непременно будет содержать треугольник Р1 Р4 Pn, к которому будет примыкать четырехугольник Р1 Р2 Р3 Р4, (n-3)-угольник Р4 Р5… Pn. Количество правильных разбиений такого четырехугольника равняется Х4, а число разбиений (n-3)-угольника равняется Xn-3. Исходя из всего изложенного, можно сказать, что полное количество правильных разбиений, которые содержатся в данной группе, равняется Xn-3 Х4. Другие группы, у которых і = 4, 5, 6, 7… будут содержать Xn-4 Х5, Xn-5 Х6, Xn-6 Х7 … правильных разбиений.

Пусть і = n-2, то количество правильных разбиений в данной группе будет совпадать с числом разбиений в группе, у которой i=2 (другими словами, равняется Xn-1).

Так как Х1 = Х2 = 0, Х3=1, Х4=2…, то число всех разбиений выпуклого многоугольника равно:

Xn = Xn-1 + Xn-2 + Xn-3 Х4 + Xn-4 Х5 + … + Х 5 Xn-4 + Х4 Xn-3 + Xn-2 + Xn-1.

Пример:

Х5 = Х4 + Х3 + Х4 = 5

Х6 = Х5 + Х4 + Х4 + Х5 = 14

Х7 = Х6 + Х5 + Х4 * Х4 + Х5 + Х6 = 42

Х8 = Х7 + Х6 + Х5 * Х4 + Х4 * Х5 + Х6 + Х7 = 132

Количество правильных разбиений, пересекающих внутри одну диагональ

При проверке частных случаев, можно прийти к предположению, что число диагоналей выпуклых n-угольников равняется произведению всех разбиений этой фигуры на (n-3).

Доказательство данного предположения: представим, что P1n = Xn * (n-3), тогда любой n-угольник возможно разбить на (n-2)-треугольников. При этом из них может быть сложен (n-3)-четырехугольник. Наряду с этим, у каждого четырехугольника будет диагональ. Поскольку в этой выпуклой геометрической фигуре могут быть проведены две диагонали, это значит, что и в любых (n-3)-четырехугольниках возможно провести дополнительные диагонали (n-3). Исходя из этого, можно сделать вывод, что в любом правильном разбиении имеется возможность провести (n-3)-диагонали, отвечающие условиям этой задачи.

Площадь выпуклых многоугольников

Нередко при решении различных задач элементарной геометрии появляется необходимость определить площадь выпуклого многоугольника. Предположим, что (Xi. Yi), i = 1,2,3… n представляет собой последовательность координат всех соседних вершин многоугольника, не имеющего самопересечений. В этом случае его площадь вычисляется по такой формуле:

S = ½ (∑ (Xi + Xi + 1) (Yi + Yi + 1)),

где (Х1, Y1) = (Xn +1, Yn + 1).

Статья закончилась. Вопросы остались?
Комментарии 0
Подписаться
Я хочу получать
Правила публикации
Редактирование комментария возможно в течении пяти минут после его создания, либо до момента появления ответа на данный комментарий.