Селекция и генетика: определения, понятие, этапы эволюции, методы развития и особенности применения

Издавна человечество занимается отбором подходящих для удовлетворения потребностей населения растительных культур и животных. Эти знания объединены в науку – селекцию. Генетика, в свою очередь, дает основу для проведения более тщательного отбора и выведения новых сортов и пород, которым присущи особенные качества. В статье рассмотрим описание этих двух наук и особенности их применения.

Что такое генетика?

Наукой о генах называется дисциплина, которая изучает процесс передачи наследственной информации и изменчивость организмов сквозь поколения. Генетика – теоретическая основа селекции, понятие которой описано ниже.

К задачам науки относятся:

  • Исследование механизма хранения и передачи информации от предков к потомкам.
  • Изучение реализации такой информации в процессе индивидуального развития организма с учетом влияния окружающей среды.
  • Изучение причин и механизмов изменчивости живых организмов.
  • Определение взаимосвязи отбора, вариативности и наследственности как факторов развития органического мира.
Значение генетики для селекции и медицины

Наука также участвует в решении практических задач, в чем проявляется значение генетики для селекции:

  • Определение эффективности отбора и выбор наиболее приемлемых типов гибридизации.
  • Контроль развития наследственных факторов с целью усовершенствования объекта до получения более значимых качеств.
  • Получение наследственно измененных форм искусственным путем.
  • Разработка мер, направленных на защиту окружающей среды, например от влияния мутагенов, вредителей.
  • Борьба с наследственными патологиями.
  • Достижение прогресса в создании новых способов селекции.
  • Поиск иных методов генной инженерии.

Объектами науки являются: бактерии, вирусы, человек, животные, растения и грибы.

Основные понятия, применяемые в науке:

  • Наследственность – свойство сохранения и передачи потомкам генетической информации, присущее всем живым организмам, которое нельзя отнять.
  • Ген – часть молекулы ДНК, которая отвечает за определенное качество организма.
  • Изменчивость – способность живого организма приобретать новые качества и терять старые в процессе онтогенеза.
  • Генотип – совокупность генов, наследственная основа организма.
  • Фенотип – совокупность качеств, которые приобретает организм в процессе индивидуального развития.

Этапы развития генетики

Развитие генетики и селекции прошло в несколько этапов. Рассмотрим периоды становления науки о генах:

  1. До 20-го века исследования в области генетики носили абстрактный характер, они не имели практической базы, а основывались на наблюдениях. Единственной передовой работой того времени стало исследование Г. Менделя, опубликованное в «Трудах общества естествоиспытателей». Но достижение не получило широкого распространения и было невостребованным до 1900 года, пока трое ученых не обнаружили сходства своих опытов с исследованием Менделя. Именно этот год стал считаться временем зарождения генетики.
  2. Примерно в 1900-1912 годах изучались законы наследственности, выявленные при гибридологических опытах, которые проводились на растениях и животных. В 1906 году английским ученым В. Ватсоном было предложено введение понятий «ген» и «генетика». А через 3 года В. Иоганнсен – датский ученый – предложил ввести понятия «фенотип» и «генотип».
  3. Примерно в 1912-1925 годах американским ученым Т. Морганом и его учениками была разработана хромосомная теория наследственности.
  4. Примерно в 1925-1940 годах впервые были получены образцы мутаций. Русские исследователи Г. А. Надсон и Г. С. Филиппов открыли влияние гамма-излучения на появление мутирующих генов. С. С. Четвериков внес вклад в развитие науки, выделив генетико-математические методы изучения изменчивости организмов.
  5. С середины 20-го века до наших дней проводятся исследования генетических изменений на молекулярном уровне. В конце 20-го века была создана модель ДНК, определена сущность гена и расшифрован генетический код. В 1969 году впервые произошло синтезирование простого гена, а позже он был введен в клетку и исследовано изменение ее наследственности.
    Значение генетики для селекции

Методы генетической науки

Генетика, как теоретическая основа селекции, пользуется в своих исследованиях определенными методами.

К ним относятся:

  • Метод гибридизации. Основывается на скрещивании видов с чистой линией, которые отличаются по одному (максимум нескольким) признакам. Цель – получение гибридных поколений, что позволяет анализировать характер наследования признаков и рассчитывать на получение потомства с необходимыми качествами.
  • Метод генеалогии. Основывается на анализе генеалогического древа, что позволяет проследить передачу генетической информации сквозь поколения, приспособленность к заболеваниям, а также составить характеристику ценности особи.
  • Близнецовый метод. Основывается на сравнении монозиготных особей, применяется при необходимости установления степени воздействия паратипических факторов при игнорировании различий в генетике.
  • Цитогенетический метод основывается на проведении анализа ядра и внутриклеточных компонентов, сравнении полученных результатов с нормой по таким параметрам: число хромосом, число их плеч и особенности строения.
  • Метод биохимии основывается на изучении функций и строения определенных молекул. Например, применение различных ферментов используется в биотехнологии и генной инженерии.
  • Биофизический метод основывается на исследовании полиморфизма белков плазмы, например молока или крови, что дает информацию о разнообразии популяций.
  • Моносомый метод в качестве основы использует гибридизацию соматических клеток.
  • Феногенетический метод основывается на изучении влияния генетических и паратипических факторов на развитие качеств организма.
  • Популяционно-статистический метод основывается на применении математического анализа в биологии, что позволяет проанализировать количественные признаки: расчет средних величин, показателей изменчивости, статистических ошибок, корреляцию и другие. Использование закона Харди-Вайнберга помогает в анализе генетической структуры популяции, уровня распространения аномалий, а также проследить изменчивость популяции при применении различных вариантов отбора.

Что такое селекция?

Селекцией называется наука, изучающая методы создания новых сортов и гибридов растений, а также пород животных. Теоретической основой селекции является генетика.

Цель науки – усовершенствование качеств организма или получение в нем свойств, необходимых человеку, путем влияния на наследственность. С помощью селекции не могут быть созданы новые виды организмов. Селекцию можно считать одной из форм эволюции, в которой присутствует искусственный отбор. Благодаря ней человечество обеспечено продовольствием.

Основные задачи науки:

  • качественное улучшение особенностей организма;
  • повышение продуктивности и урожайности;
  • повышение устойчивости организмов к заболеваниям, вредителям, изменениям климатических условий.
Методы генетики и селекции

Особенностью является комплексность науки. Она тесно связана с анатомией, физиологией, морфологией, систематикой, экологией, иммунологией, биохимией, фитопатологией, растениеводством, животноводством и множеством других наук. Значимыми являются знания об оплодотворении, опылении, гистологии, эмбриологии и молекулярной биологии.

Достижения современной селекции позволяют управлять наследственностью и изменчивостью живых организмов. Значение генетики для селекции и медицины отражается в целенаправленном контроле преемственности качеств и возможностях получения гибридов растений и животных для удовлетворения потребностей человека.

Этапы развития селекции

Издавна человек занимался разведением и отбором растений и животных сельскохозяйственного назначения. Но такая работа основывалась на наблюдении и интуиции. Развитие селекции и генетики проходило практически одновременно. Рассмотрим этапы становления селекции:

  1. В период развития растениеводства и животноводства селекция стала носить массовый характер, а становление капитализма привело к селективным работам на уровне промышленности.
  2. В конце 19-го века немецкий ученый Ф. Ахард провел исследование и привил сахарной свекле качество по увеличению урожайности. Английские селекционеры П. Ширеф и Ф. Галлета занимались изучением сортов пшеницы. В России было создано «Полтавское опытное поле», где проходили исследования сортового состава пшеницы.
  3. Селекция как наука начала развиваться с 1903 года, когда была организована селекционная станция при Московском сельскохозяйственном институте.
  4. К середине 20-го века были совершены такие открытия: закон наследственной изменчивости, теория центров происхождения растений культурного назначения, эколого-географические принципы селекции, получены знания об исходном материале растений и их иммунитете. Создан Всесоюзный институт прикладной ботаники и новых культур под руководством Н. И. Вавилова.
  5. Исследования с конца 20-го века и до наших дней носят комплексный характер, селекция тесно взаимодействует с другими науками, особенно с генетикой. Были созданы гибриды с высокой агроэкологической адаптацией. Современные исследования уделяют внимание получению у гибридов высокой продуктивности и противостояния биотическим и абиотическим стрессорам.
Генетика - теоретическая основа селекции

Методы селекции

Генетика рассматривает закономерности передачи наследственной информации и способы управления таким процессом. В селекции используются знания, полученные от генетики, и применяются иные методы для оценки организмов.

Основными из них являются:

  • Метод отбора. В селекции применяется естественный и искусственный (бессознательный или методический) отбор. Также отбираться может конкретный организм (индивидуальный отбор) или их группа (массовый отбор). Определение вида отбора основывается на особенностях размножения животных и растений.
  • Гибридизация позволяет получить новые генотипы. В методе выделяют внутривидовую (скрещивание происходит внутри одного вида) и межвидовую гибридизацию (скрещивание разных видов). Проведение инбридинга позволяет закрепить наследственные свойства при снижении жизнеспособности организма. Если во втором или последующих поколениях проводится аутбридинг, то селекционер получает высокоурожайные и стойкие гибриды. Установлено, что при отдаленном скрещивании потомство бесплодно. Здесь значение генетики для селекции выражается в возможности исследования генов и влияния на плодовитость организмов.
  • Полиплоидия – процесс увеличения хромосомных наборов, который позволяет добиться рождаемости у бесплодных гибридов. Замечено, что некоторые культурные растения после полиплоидии имеют более высокую рождаемость, чем их родственные виды.
  • Индуцированный мутагенез – искусственно вызванный процесс мутаций организма после обработки его мутагеном. После окончания мутации селекционер получает информацию о влиянии фактора на организм и приобретение им новых качеств.
  • Клеточная инженерия предназначена для конструирования клеток нового типа с помощью культивирования, реконструкции и гибридизации.
  • Генная инженерия позволяет выделять и исследовать гены, проводить с ними манипуляции с целью усовершенствования качеств организмов и выведения новых видов.

Растения

В процессе изучения роста, развития и выделения полезных свойств растений генетика и селекция тесно взаимосвязаны. Генетика в сфере анализа жизнедеятельности растений занимается вопросами изучения особенностей их развития и генов, которые обеспечивают нормальное формирование, а также функционирование организма.

Наука изучает такие направления:

  • Развитие одного конкретного организма.
  • Контроль сигнальных систем растения.
  • Экспрессия генов.
  • Механизмы взаимодействия клеток и тканей растения.

Селекция, в свою очередь, обеспечивает создание новых или улучшение качеств уже существующих видов растений на основании знаний, полученных с помощью генетики. Наука изучается и успешно используется не только фермерами и садоводами, но и селекционерами в исследовательских организациях.

Генетика и селекция

Применение достижений генетики в селекции и семеноводстве дает возможность привить растениям новые качества, которые могут быть полезны в разных сферах человеческой жизни, например в медицине или кулинарии. Также знания о генетических особенностях позволяют получить новые сорта культур, которые могут произрастать в иных климатических условиях.

Благодаря генетике в селекции применяется метод скрещивания и индивидуального отбора. Развитие науки о генах позволяет применять в селекции такие методы, как полиплоидия, гетерозис, экспериментальный мутагенез, хромосомная и генная инженерия.

Мир животных

Селекция и генетика животных – разделы наук, которые занимаются изучением особенностей развития представителей животного мира. Благодаря генетике человек получает знания о наследственности, генетических особенностях и изменчивости организма. А селекция позволяет отобрать для использования только тех животных, качества которых необходимы человеку.

Издавна люди проводят отбор животных, которые, например, более подходят для использования в сельском хозяйстве или охоты. Большое значение для селекции имеют хозяйственные признаки и экстерьер. Так, животные хозяйственного назначения оцениваются по внешнему виду и качеству их потомства.

Применение знаний генетики в селекции позволяет контролировать потомство животных и их необходимые качества:

  • устойчивость к вирусам;
  • увеличение удоя;
  • размер особи и телосложение;
  • терпимость к климату;
  • плодовитость;
  • пол приплода;
  • устранение наследственных нарушений у потомков.

Селекция животных получила распространение не только в целях удовлетворения первоочередных потребностей человека в питании. Сегодня можно наблюдать множество домашних пород животных, выведенных искусственно, а также грызунов и рыб, например гуппи. Селекция и генетика в животноводстве используют такие методы: гибридизация, искусственное осеменение, экспериментальный мутагенез.

Селекционеры и генетики часто сталкиваются с проблемой нескрещиваемости видов среди первого поколения гибридов и значительным снижением плодовитости потомков. Современные ученые активно решают такие вопросы. Основной задачей научных работ является изучение закономерностей совместимости гамет, плода и организма матери на генетическом уровне.

Микроорганизмы

Современные знания о селекции и генетике позволяют обеспечить потребности человека в ценных продуктах питания, которые в основном получают от животноводства. Но внимание ученых привлекают и другие объекты природы – микроорганизмы. Наука долгое время считала, что ДНК является индивидуальной особенностью и не может быть передана другому организму. Но исследования показали, что ДНК бактерии могут быть успешно введены в хромосомы растений. Благодаря такому процессу качества, присущие бактерии или вирусу, приживаются в другом организме. Также давно известно влияние генетической информации вирусов на клетки человека.

Изучение генетики и селекция микроорганизмов проводятся в более короткие сроки, по сравнению с растениеводством и животноводством. Это объясняется быстрым размножением и сменой поколений микроорганизмов. Современные методы селекции и генетики – использование мутагенов и гибридизации – позволили создать микроорганизмы с новыми свойствами:

  • мутанты микроорганизмов способны к сверхсинтезу аминокислот и повышенному образованию витаминов и провитаминов;
  • мутанты азотфиксирующих бактерий способны значительно ускорить рост растения;
  • выведены дрожжевые организмы – одноклеточные грибы и многие другие.
Теоретической основой селекции является генетика

Селекционеры и генетики используют такие мутагены:

  • ультрафиолет;
  • ионизирующая радиация;
  • этиленимин;
  • нитрозометилмочевина;
  • применение нитратов;
  • акридиновые краски.

Для эффективности мутации используются частые обработки микроорганизма малыми дозами мутагена.

Медицина и биотехнологии

Общим в значении генетики для селекции и медицины является то, что в обоих случаях наука позволяет изучить наследственность организмов, проявляющийся у них иммунитет. Такие знания важны для борьбы с возбудителями болезней.

Изучение генетики в области медицины позволяет:

  • предотвратить рождение детей с генетическими отклонениями;
  • провести профилактику и лечение наследственных патологий;
  • изучить влияние окружающей среды на наследственность.

Для этого применяются такие методы:

  • генеалогический – изучение семейного древа;
  • близнецовый – сопоставление близнецовой пары;
  • цитогенетический – исследование хромосом;
  • биохимический – позволяет выявить мутантные аллеи в ДНК;
  • дерматоглифический – анализ кожного рисунка;
  • моделирование и другие.

Современные исследования выявили примерно 2 тысячи болезней, передающихся по наследству. В основном это психические расстройства. Изучение генетики и проведение селекции микроорганизмов позволяют снизить уровень заболеваемости среди населения.

Достижения генетики и селекции в биотехнологии позволяют использовать биологические системы (прокариоты, грибы и водоросли) в науке, промышленном производстве, медицине, сельском хозяйстве. Знания о генетике дают новые возможности для развития таких технологий: энерго и ресурсосберегающие, безотходные, наукоемкие, безопасные. В биотехнологии применяются такие методы: клеточная и хромосомная селекция, генная инженерия.

Интенсивное развитие генетики и селекции

Генетика и селекция – науки, которые неразрывно связаны. Селекционная работа во многом зависит от генетического разнообразия исходного числа организмов. Именно эти науки предоставляют знания для развития сельского хозяйства, медицины, промышленности и других сфер человеческой жизни.

Статья закончилась. Вопросы остались?
Комментарии 0
Подписаться
Я хочу получать
Правила публикации
Редактирование комментария возможно в течении пяти минут после его создания, либо до момента появления ответа на данный комментарий.