Клетка растения. Особенности клеток растений

Тела живых организмов могут представлять собой одну-единственную клетку, их группу или огромное скопление, насчитывающее миллиарды таких элементарных структур. К последним относится большинство высших растений. Изучением клетки — основного элемента строения и функций живых организмов - занимается цитология. Этот раздел биологии начал бурно развиваться после открытия электронного микроскопа, совершенствования хроматографии и других методов биохимии. Рассмотрим главные признаки, а также особенности, по которым клетка растения отличается от мельчайших структурных единиц строения бактерий, грибов и животных.

Открытие клетки Р. Гуком

Теория о крошечных элементах строения всего живого прошла путь развития, измеряемый сотнями лет. Строение оболочки клетки растений впервые увидел в свой микроскоп британский ученый Р. Гук. Общие положения клеточной гипотезы сформулировали Шлейден и Шванн, до этого похожие выводы делали и другие исследователи.

Англичанин Р. Гук рассмотрел в микроскоп срез пробки дуба и представил результаты на заседании Королевского общества в Лондоне 13 апреля 1663 года (по другим данным, событие произошло в 1665 году). Оказалось, что кора дерева состоит из крохотных ячеек, названных Гуком «клетками». Стенки этих камер, образующих узор в виде пчелиных сот, ученый считал живым веществом, а полость признал безжизненной, вспомогательной структурой. В дальнейшем было доказано, что внутри клетки растений и животных содержат субстанцию, без которой невозможно их существование, да и деятельность всего организма.

Клеточная теория

Важное открытие Р. Гука получило развитие в работах других ученых, изучавших строение клеток животных и растений. Схожие элементы строения наблюдали ученые на микроскопических срезах многоклеточных грибов. Было установлено, что структурные единицы живых организмов обладают способностью к делению. На основании исследований представители биологической науки Германии М. Шлейден и Т. Шванн сформулировали гипотезу, ставшую впоследствии клеточной теорией.

Сравнение клеток растений и животных с бактериями, водорослями и грибами позволило немецким исследователям прийти к следующему выводу: обнаруженные Р. Гуком «камеры» — это элементарные структурные единицы, а идущие в них процессы лежат в основе жизнедеятельности большинства организмов на Земле. Важное дополнение внес Р. Вирхов в 1855 году, отметив, что деление клеток — единственный путь их размножения. Теория Шлейдена-Шванна с уточнениями стала общепризнанной в биологии.

Клетка — мельчайший элемент строения и жизнедеятельности растений

Согласно теоретическим положениям Шлейдена и Шванна, органический мир един, что доказывает схожее микроскопическое строение животных и растений. Кроме этих двух царств, клеточное существование характерно для грибов, бактерий, а у вирусов отсутствует. Рост и развитие живых организмов обеспечивается благодаря возникновению новых клеток в процессе деления уже существующих.

Многоклеточный организм — не просто скопление структурных элементов. Маленькие единицы строения взаимодействуют между собой, образуя ткани и органы. Одноклеточные организмы живут изолированно, что не мешает им создавать колонии. Главные признаки клетки:

  • способность к самостоятельному существованию;
  • собственный обмен веществ;
  • самовоспроизведение;
  • развитие.

В эволюции жизни одним из важнейших этапов стало отделение ядра от цитоплазмы при помощи защитной мембраны. Связь сохранилась, ведь отдельно эти структуры не могут существовать. В настоящее время выделяют два надцарства — безъядерных и ядерных организмов. Вторую группу образуют растения, грибы и животные, изучением которых занимаются соответствующие разделы науки и в целом биология. Клетка растения обладает ядром, цитоплазмой и органоидами, речь о которых пойдет ниже.

Разнообразие клеток растений

На изломе спелого арбуза, яблока или картофеля можно заметить невооруженным глазом структурные «ячейки», заполненные жидкостью. Это клетки паренхимы плодов, имеющие диаметр до 1 мм. Лубяные волокна — вытянутые структуры, длина которых значительно превышает ширину. Например, клетка растения, которое называется хлопчатник, достигает в длину 65 мм. Волокна луба льна и конопли имеют линейные размеры, составляющие 40–60 мм. Типичные клетки намного меньше —20–50 мкм. Рассмотреть такие крохотные структурные элементы можно только под микроскопом. Особенности мельчайших единиц строения растительного организма проявляются не только в различиях по форме и размерам, но и в выполняемых функциях в составе тканей.

Клетка растения: основные черты строения

Ядро и цитоплазма тесно взаимосвязаны и взаимодействуют между собой, что подтверждают исследования ученых. Это главные части эукариотической клетки, от них зависят все остальные элементы строения. Ядро служит для накопления и передачи генетической информации, необходимой для синтеза белка.

Британский ученый Р. Броун в 1831 году впервые заметил в клетке растения семейства орхидных особое тельце (нуклеус). Это было ядро, окруженное полужидкой цитоплазмой. Название этой субстанции означает в дословном переводе с греческого «первичная масса клетки». Она может быть более жидкой или вязкой, но обязательно покрыта мембраной. Наружная оболочка клетки состоит в основном из целлюлозы, лигнина, воска. Один из признаков, отличающих клетки растений и животных, — наличие этой прочной целлюлозной стенки.

Строение цитоплазмы

Внутренняя часть растительной клетки заполнена гиалоплазмой с взвешенными в ней мельчайшими гранулами. Ближе к оболочке так называемая эндоплазма переходит в более вязкую экзоплазму. Именно эти субстанции, которыми заполнена клетка растения, служат местом протекания биохимических реакций и транспорта соединений, размещения органоидов и включений.

Примерно 70–85 % цитоплазмы составляет вода, 10–20 % приходится на белки, другие химические компоненты — углеводы, липиды, минеральные соединения. Клетки растений имеют цитоплазму, в которой среди конечных продуктов синтеза присутствуют биорегуляторы функций и запасные вещества (витамины, ферменты, масла, крахмал).

Ядро

Сравнение клеток растений и животных показывает, что они имеют сходное строение ядра, находящегося в цитоплазме и занимающего до 20 % ее объема. Англичанин Р. Броун, впервые рассмотревший под микроскопом этот важнейший и постоянный компонент всех эукариотов, дал ему название от латинского слова nucleus. Внешний вид ядер обычно коррелирует с формой и размерами клеток, но иногда отличается от них. Обязательные элементы строения — мембрана, кариолимфа, ядрышко и хроматин.

В мембране, отделяющей ядро от цитоплазмы, имеются поры. Через них вещества поступают из ядра в цитоплазму и обратно. Кариолимфа представляет собой жидкое или вязкое ядерное содержимое с участками хроматина. Ядрышко содержит рибонуклеиновую кислоту (РНК), проникающую в рибосомы цитоплазмы для участия в синтезе белка. Другая нуклеиновая кислота — дезоксирибонуклеиновая (ДНК) — также присутствует в больших количествах. ДНК и РНК впервые были обнаружены в животных клетках в 1869 году, впоследствии найдены в растениях. Ядро — это «центр управления» внутриклеточными процессами, место хранения информации о наследственных признаках всего организма.

Эндоплазматическая сеть (ЭПС)

Строение клеток животных и растений имеет значительное сходство. Обязательно присутствуют в цитоплазме внутренние канальцы, заполненные разными по происхождению и составу веществами. Гранулярная разновидность ЭПС отличается от агранулярного типа наличием рибосом на поверхности мембран. Первая участвует в синтезе белков, вторая играет роль в образовании углеводов и липидов. Как установили исследователи, каналы не только пронизывают цитоплазму, они связаны с каждым органоидом живой клетки. Поэтому значение ЭПС оценивают очень высоко как участника метаболизма, системы связи с окружающей средой.

Рибосомы

Строение клетки растений или животных трудно представить без этих мелких частиц. Рибосомы очень малы, увидеть их можно только в электронный микроскоп. В составе телец преобладают белки и молекулы рибонуклеиновых кислот, есть незначительное количество ионов кальция и магния. Практически все количество РНК клетки сосредоточено в рибосомах, они обеспечивают белковый синтез, «собирая» протеины из аминокислот. Затем белки поступают в каналы ЭПС и разносятся сетью по всей клетке, проникают в ядро.

Митохондрии

Эти органоиды клетки считают ее энергетическими станциями, они видны при увеличении в обычный световой микроскоп. Количество митохондрий варьируется в очень широких пределах, их может насчитываться единицы или тысячи. Строение органоида не отличается большой сложностью, есть две мембраны и матрикс внутри. Митохондрии состоят из белка липидов, ДНК и РНК, отвечают за биосинтез АТФ — аденозинтрифосфорной кислоты. Для этого вещества клетки растений или животного характерно присутствие трех фосфатов. Отщепление каждого из них дает энергию, необходимую для всех процессов жизнедеятельности в самой клетке и во всем организме. Наоборот, присоединение остатков фосфорной кислоты дает возможность запасать энергию и переносить в таком виде по всей клетке.

Рассмотрите на представленном ниже рисунке органоиды клетки и назовите те, что вам уже известны. Обратите внимание на крупный пузырек (вакуоль) и зеленые пластиды (хлоропласты). Речь о них пойдет дельше.

Комплекс Гольджи

Сложный клеточный органоид состоит из гранул, мембран и вакуолей. Комплекс был открыт в 1898 году и получил название в честь итальянского биолога. Особенности клеток растений заключаются в равномерном распространении частиц Гольджи по всей цитоплазме. Ученые считают, что комплекс необходим для регулирования содержания воды и продуктов жизнедеятельности, удаления избытков веществ.

Пластиды

Только клетки тканей растений содержат органоиды зеленого цвета. Кроме того, есть бесцветные, желтые и оранжевые пластиды. На их строении и функциях отражается вид питания растения, причем они способны менять цвет за счет химических реакций. Основные типы пластид:

  • оранжевые и желтые хромопласты, образованные каротином и ксантофиллом;
  • хлоропласты, содержащие зерна хлорофилла, — пигмента зеленого цвета;
  • лейкопласты — бесцветные пластиды.

Строение клетки растений связано с идущими в ней химическими реакциями синтеза органического вещества из углекислого газа и воды с использованием световой энергии. Название этого удивительного и очень сложного процесса — фотосинтез. Осуществляются реакции благодаря хлорофиллу, именно это вещество способно улавливать энергию луча света. Наличием зеленого пигмента объясняется характерный цвет листьев, травянистых стеблей, незрелых плодов. Хлорофилл по строению похож на гемоглобин крови животных и человека.

Красная, желтая и оранжевая окраска различных органов растений обусловлена присутствием в клетках хромопластов. Их основой является большая группа каротиноидов, выполняющих важную роль в метаболизме. Лейкопласты отвечают за синтез и накопление крахмала. Пластиды растут и размножаются в цитоплазме, вместе с ней передвигаются вдоль внутренней оболочки клетки растения. Они богаты ферментами, ионами, другими биологически активными соединениями.

Отличия в микроскопическом строении основных групп живых организмов

Большинство клеток напоминают крошечный мешочек, наполненный слизью, тельцами, гранулами и пузырьками. Часто присутствуют разные включения в виде твердых кристаллов минеральных веществ, капель масел, крахмальных зерен. Клетки тесно соприкасаются в составе тканей растений, жизнь в целом зависит от деятельности этих мельчайших единиц строения, образующих целое.

При многоклеточном строении существует специализация, которая выражается в разных физиологических задачах и функциях микроскопических структурных элементов. Они определяются в основном местоположением тканей в листьях, корне, стебле или генеративных органах растения.

Выделим основные элементы проведенного сравнения клетки растения с элементарными единицами строения других живых организмов:

  1. Плотная оболочка, характерная только для растений, образована клетчаткой (целлюлозой). У грибов мембрана состоит из прочного хитина (особого белка).
  2. Клетки растений и грибов отличаются по цвету благодаря наличию или отсутствию пластид. Такие тельца, как хлоропласты, хромопласты и лейкопласты, присутствуют только в растительной цитоплазме.
  3. Есть органоид, который отличает животных, — это центриоль (клеточный центр).
  4. Только в составе клетки растения присутствует крупная центральная вакуоль, заполненная жидким содержимым. Обычно этот клеточный сок окрашен пигментами в разные цвета.
  5. Главное запасное соединение растительного организма — крахмал. Грибы и животные накапливают в своих клетках гликоген.

Среди водорослей известно много одиночных, свободно живущих клеток. К примеру, таким самостоятельным организмом является хламидомонада. Хотя растения отличаются от животных присутствием целлюлозной клеточной стенки, но половые клетки лишены такой плотной оболочки — это еще одно доказательство единства органического мира.

Комментарии
Осадка ядра в пределах оболочки и смещение митохондрий к верхней части клетки-адаптация при гравитации функций самой клетки в оптимальном режиме.Животная клетка позволяет себе совмещать вектор линии тела с гравитацией в силу обстоятельств:голова-ноги.У растительной приз 😌емлёно