MIMO-технология (Multiple Input Multiple Output) — метод пространственного кодирования сигнала

MIMO (Multiple Input Multiple Output, многоканальный вход – многоканальный выход) – метод скоординированного использования нескольких радиоантенн в беспроводных сетевых коммуникациях, распространенный в современных домашних широкополосных маршрутизаторах и в сетях сотовой связи LTE и WiMAX.

Как это работает?

Маршрутизаторы Wi-Fi с MIMO-технологией используют те же сетевые протоколы, что и обычные одноканальные. Они обеспечивают более высокую производительность за счет повышения эффективности передачи и приема данных по линии беспроводной связи. В частности, сетевой трафик между клиентами и маршрутизатором организуется в отдельные потоки, передаваемые параллельно, с последующим их восстановлением принимающим устройством.

Технология MIMO может увеличить пропускную способность, диапазон и надежность передачи при высоком риске помех со стороны другого беспроводного оборудования.

Применение в сетях Wi-Fi

Технология MIMO включена в стандарт с версии 802.11n. Ее использование повышает производительность и доступность сетевых соединений по сравнению с обычными маршрутизаторами.

Количество антенн может варьироваться. Например, MIMO 2x2 предусматривает наличие двух антенн и двух передатчиков, способных осуществлять прием и передачу по двум каналам.

Чтобы воспользоваться этой технологией и реализовать ее преимущества, клиентское устройство и маршрутизатор должны установить между собой MIMO-соединение. В документации к используемому оборудованию должно быть указано, поддерживает ли оно такую возможность. Другого простого способа проверить, применяется ли в сетевом соединении данная технология, нет.

SU-MIMO и MU-MIMO

Первое поколение технологии, представленное в стандарте 802.11n, поддерживало однопользовательский (SU) метод. По сравнению с традиционными решениями, когда все антенны маршрутизатора должны координироваться для связи с одним клиентским устройством, SU-MIMO позволяет распределять каждую из них между разным оборудованием.

Многопользовательская (MU) технология MIMO была создана для использования в сетях Wi-Fi 802.11ac на частоте 5 ГГц. Если предыдущий стандарт требовал, чтобы маршрутизаторы управляли своими клиентскими подключениями поочередно (по одному за раз), антенны MU-MIMO могут обеспечивать связь с несколькими клиентами параллельно. Многопользовательский метод улучшает производительность соединений. Однако даже если маршрутизатор 802.11ac имеет необходимую аппаратную поддержку технологии MIMO, есть и другие ограничения:

  • поддерживается ограниченное количество одновременных клиентских подключений (2–4) в зависимости от конфигурации антенны;
  • координация антенн обеспечивается только в одном направлении – от маршрутизатора до клиента.

MIMO и сотовая связь

Технология используется в разных типах беспроводных сетей. Она все чаще находит применение в сотовой связи (4G и 5G) в нескольких формах:

  • Network MIMO – координированная передача сигнала между базовыми станциями;
  • Massive MIMO – использование большого количества (сотен) антенн;
  • миллиметровые волны – задействование сверхвысокочастотных полос, в которых пропускная способность больше, чем в диапазонах, лицензированных для 3G и 4G.

Многопользовательская технология

Чтобы понять, как работает MU-MIMO, следует рассмотреть, как обрабатывает пакеты данных традиционный беспроводной маршрутизатор. Он хорошо справляется с отправкой и приемом данных, но только в одном направлении. Другими словами, он может поддерживать коммуникацию только с одним устройством одновременно. Например, если загружается видео, то нельзя в то же время транслировать на консоль онлайн-видеоигру.

Пользователь может запускать несколько устройств в сети Wi-Fi, и маршрутизатор очень быстро по очереди переправляет к ним биты данных. Однако в одно и то же время он может обращаться только к одному устройству, что является основной причиной снижения качества соединения, если пропускная способность Wi-Fi слишком низкая.

Поскольку это работает, то внимание на себя обращает мало. Тем не менее эффективность работы маршрутизатора, который передает данные на несколько устройств одновременно, можно повысить. При этом он станет быстрее работать и обеспечит более интересные сетевые конфигурации. Вот почему появились разработки, подобные MU-MIMO, которые в конечном итоге были включены в современные стандарты беспроводной связи. Эти разработки позволяют передовым маршрутизаторам взаимодействовать сразу с несколькими устройствами.

Краткая история: SU против MU

Одно- и многопользовательские MIMO представляют собой разные способы коммуникации маршрутизаторов с несколькими устройствами. Первый из них старше. Стандарт SU разрешал отправку и получение данных сразу по нескольким потокам в зависимости от имеющегося количества антенн, каждая из которых могла работать с различными устройствами. SU был включен в обновление 802.11n 2007 года и начал постепенно внедряться в новые линейки продуктов.

Однако у SU-MIMO были ограничения в дополнение к требованиям к антенне. Хотя может быть подключено несколько устройств, они по-прежнему имеют дело с маршрутизатором, который может работать только с одним за раз. Скорость передачи данных увеличилась, помехи стали меньшей проблемой, но возможностей для улучшения осталось много.

MU-MIMO является стандартом, который развился из SU-MIMO и SDMA (множественного доступа с пространственным разделением каналов). Технология позволяет базовой станции взаимодействовать с несколькими устройствами, используя отдельный поток для каждого из них, как будто все они имеют свой собственный маршрутизатор.

В конечном итоге поддержка MU была добавлена в обновление стандарта 802.11ac в 2013 г. После нескольких лет разработок производители начали включать эту функцию в свои продукты.

Преимущества MU-MIMO

Это захватывающая технология, поскольку она оказывает заметное влияние на повседневное использование Wi-Fi без прямого изменения пропускной способности или других ключевых параметров беспроводного соединения. Сети становятся намного эффективнее.

Для обеспечения стабильного соединения с ноутбуком, телефоном, планшетом или компьютером стандарт не требует наличия у маршрутизатора нескольких антенн. Каждое такое устройство может не делиться своим каналом MIMO с другими. Это особенно заметно при потоковой передаче видео или выполнении других сложных задач. Скорость работы в Интернете субъективно повышается, и соединение устанавливается надежнее, хотя на самом деле становится более разумной организация сети. Также повышается число одновременно обслуживаемых устройств.

Ограничения MU-MIMO

Многопользовательская технология множественного доступа имеет и ряд ограничений, о которых стоит упомянуть. Существующие стандарты поддерживают 4 устройства, но позволяют добавить больше, и им придется делиться потоком, что возвращает к проблемам SU-MIMO. Технология в основном используется в нисходящих каналах связи и ограничена, когда дело доходит до исходящих. Кроме того, маршрутизатор MU-MIMO должен иметь больше информации об устройствах и состоянии каналов, чем требовали предыдущие стандарты. Это усложняет управление и устранение неполадок в беспроводных сетях.

MU-MIMO также является направленной технологией. Это означает, что 2 устройства, расположенные рядом, не могут одновременно использовать разные каналы. Например, если муж смотрит онлайн-трансляцию по телевизору, а рядом его жена передает игру PS4 на свою Vita через Remote Play, им все равно придется делиться пропускной способностью. Маршрутизатор может предоставлять дискретные потоки только устройствам, которые расположены в разных направлениях.

Massive MIMO

По мере продвижения в сторону беспроводных сетей пятого поколения (5G) рост числа смартфонов и новых применений привел к 100-кратному увеличению их требуемой пропускной способности по сравнению с LTE. Новая технология Massive MIMO, которой в последние годы уделяется много внимания, призвана значительно увеличить показатели эффективности телекоммуникационных сетей до беспрецедентных уровней. При дефиците и дороговизне доступных ресурсов операторов привлекает возможность увеличить пропускную способность в полосах частот ниже 6 ГГц.

Несмотря на значительный прогресс, Massive MIMO далек от совершенства. Технология по-прежнему активно исследуется как в академических кругах, так и в промышленности, где инженеры стремятся достичь теоретических результатов с помощью коммерчески приемлемых решений.

Massive MIMO может помочь в решении двух ключевых проблем – пропускной способности и охвата. Для операторов мобильной связи частотный диапазон остается дефицитным и относительно дорогостоящим ресурсом, но является ключевым условием для повышения скорости передачи сигнала. В городах интервал между базовыми станциями обусловлен пропускной способностью, а не охватом, что требует развертывания большого их количества и приводит к дополнительным расходам. Massive MIMO позволяет увеличить емкость уже существующей сети. В областях, где развертывание базовых станций обусловлено охватом, технология позволяет увеличить радиус их действия.

Концепция

Massive MIMO кардинально меняет текущую практику, используя очень большое количество когерентно и адаптивно работающих сервисных антенн 4G (сотни или тысячи). Это помогает фокусировать передачу и прием энергии сигнала в меньших областях пространства, значительно улучшая производительность и энергоэффективность, особенно в сочетании с одновременным планированием большого количества пользовательских терминалов (десятков или сотен). Метод изначально предполагался для дуплексной передачи с временным разделением (TDD), но потенциально может применяться также в режиме дуплексного (PDD) частотного разделения.

Технология MIMO: достоинства и недостатки

Преимуществами метода являются широкое использование недорогих маломощных компонентов, снижение латентности, упрощение уровня управления доступом (MAC), устойчивость к случайным и преднамеренным помехам. Ожидаемая пропускная способность зависит от среды распространения, обеспечивающей асимптотически ортогональные каналы к терминалам, и эксперименты до сих пор не выявили никаких ограничений в этом отношении.

Однако вместе с устранением многих проблем появляются новые, требующие неотложного решения. Например, в системах MIMO необходимо обеспечить эффективную совместную работу множества недорогих компонентов малой точности, собирать данные о состоянии канала и распределять ресурсы для вновь подключенных терминалов. Также требуется использовать дополнительные степени свободы, обеспечиваемые избытком сервисных антенн, снизить внутреннее энергопотребление для достижения общей энергоэффективности и найти новые сценарии развертывания.

Рост количества 4G-антенн, участвующих в реализации MIMO, обычно требует посещения каждой базовой станции для изменения конфигурации и проводки. Первоначальное развертывание сетей LTE потребовало установки нового оборудования. Это дало возможность произвести конфигурацию MIMO 2x2 исходного стандарта LTE. Дальнейшие изменения базовых станций производятся только в крайних случаях, а реализации более высокого порядка зависят от операционной среды. Еще одна проблема заключается в том, что операция MIMO приводит к совершенно другому поведению в сети, чем предыдущие системы, что создает некоторую неопределенность планирования. Поэтому операторы склонны сначала использовать другие разработки, особенно если они могут быть развернуты путем обновления программного обеспечения.

Комментарии