Функции распределения случайной величины. Как найти функцию распределения случайной величины

Чтобы найти функции распределения случайных величин и их переменных, необходимо изучить все особенности данной области знаний. Существует несколько различных методов для нахождения рассматриваемых значений, включая изменение переменной и генерирование момента. Распределение - такое понятие, в основу которого легли такие элементы, как дисперсия, вариации. Однако они характеризуют только степень размаха рассеяния.

Более важными функциями случайных величин являются те, которые связаны и независимы, и одинаково распределены. Например, если X1 - вес случайно выбранного индивидуума из популяции самцов, X2 - вес другого, ..., а Xn - вес еще одного человека из мужского населения, тогда, необходимо узнать, как случайная функция X распределяется. В этом случае применима классическая теорема, называемая центральной предельной. Она позволяет показать, что при больших n функция следует стандартным распределениям.

Функции одной случайной переменной

Центральная предельная теорема предназначена для аппроксимации дискретных рассматриваемых значений, таких как биномиальное и Пуассона. Функции распределения случайных величин, рассматриваются, в первую очередь, на простых значениях одной переменной. Например, если X является непрерывной случайной величиной, имеющей собственное распределение вероятности. В данном случае исследуется, как найти функцию плотности Y, используя два разных подхода, а именно метод функции распределения и изменения переменной. Сначала рассматриваются только взаимно однозначные значения. Затем необходимо модифицировать технику изменения переменной, чтобы найти ее вероятность. Наконец, нужно узнать, как обратная функция кумулятивного распределения может помочь моделировать случайные числа, которые следуют за определенными последовательными схемами.

Методика распределения рассматриваемых значений

Метод функции распределения вероятностей случайной величины применим для того, чтобы найти ее плотность. При использовании этого способа вычисляется кумулятивное значение. Затем, дифференцируя его, можно получить плотность вероятности. Теперь, при наличии метода функции распределения, можно рассмотреть еще несколько примеров. Пусть X – непрерывная случайная величина с определенной плотностью вероятности.

Какова функция плотности вероятности от x2? Если посмотреть или построить график функции (сверху и справа) у = х2, можно отметить, что она является возрастающей X и 0 <y<1. Теперь необходимо использовать рассматриваемый метод, чтобы найти Y. Сначала находится кумулятивная функция распределения, просто нужно дифференцировать чтобы получить плотность вероятности. Поступая таким образом, получаем: 0<y<1. Метод распределения успешно реализован, чтобы найти Y, когда Y – возрастающая функция X. Кстати, f (y) интегрируется в 1 над y.

В последнем примере большую осторожность использовали для индексирования кумулятивных функций и плотности вероятности либо с помощью X, либо с Y, чтобы указать, к какой случайной переменной они принадлежали. Например, при нахождении кумулятивной функции распределения Y получили X. Если необходимо найти случайную величину X и ее плотность, то ее просто нужно дифференцировать.

Техника смены переменных

Пусть X – непрерывная случайная величина заданная функцией распределения с общим знаменателем f (x). В этом случае, если поместить значение y в X = v (Y), то получится значение x, например v (y). Теперь, нужно получить функцию распределения непрерывной случайной величины Y. Где первое и второе равенство имеет место из определения кумулятивной Y. Третье равенство выполняется потому, что части функции, для которой u (X) ≤ y, также верно, что X ≤ v (Y). И последнее выполняется для определения вероятности в непрерывной случайной величине X. Теперь нужно взять производную от FY (y), кумулятивной функции распределения Y, чтобы получить плотность вероятности Y.

Обобщение для функции уменьшения

Пусть X – непрерывная случайная величина с общим f (x), определенная над c1<x<c2. И пусть Y = u (X) – убывающая функция от X с обратной X = v (Y). Поскольку функция непрерывна и убывает, существует обратная функция X = v (Y).

Для решения этого вопроса можно собирать количественные данные и использовать эмпирическую кумулятивную функцию распределения. Обладая этой информацией и апеллируя ею, нужно комбинировать образцы средств, стандартные отклонения, медиаданные и так далее.

Аналогично даже довольно простая вероятностная модель может иметь огромное количество результатов. Например, если перевернуть монету 332 раза. Тогда число получаемых результатов от переворотов больше, чем у google (10100) – число, но не менее 100 квинтиллионов раз выше элементарных частиц в известной вселенной. Не интересен анализ, который дает ответ на каждый возможный результат. Потребуется более простая концепция, такая ​​как количество головок или самый длинный ход хвостов. Чтобы сосредоточить внимание на вопросах, представляющих интерес, принимается определенный результат. Определение в данном случае следующее: случайная величина является вещественной функцией с вероятностным пространством.

Диапазон S случайной величины иногда называют пространством состояний. Таким образом, если X - рассматриваемое значение, то так N = X2, exp ↵X, X2 + 1, tan2 X, bXc и так далее. Последнее из них, округляя X до ближайшего целого числа, называют функцией пола.

Функции распределения

Как только определена интересующая функция распределения случайной величины х, вопрос обычно становится следующим: «Каковы шансы, что X попадает в какое-то подмножество значений B?». Например, B = {нечетные числа}, B = {больше 1} или B = {между 2 и 7}, чтобы указать эти результаты, которые имеют X, значение случайной величины, в подмножестве А. Таким образом, в приведенном выше примере можно описать события следующим образом.

{X - нечетное число}, {X больше 1} = {X> 1}, {X находится между 2 и 7} = {2 <X <7}, чтобы соответствовать трем вариантам выше для подмножества B. Многие свойства случайных величин не взаимосвязаны с конкретной X. Они, скорее, зависят от того, как X распределяет свои значения. Это приводит к определению, которое звучит следующим образом: функция распределения случайной величины x кумулятивная и определяется количественными наблюдениями.

Случайные переменные и функции распределения

Таким образом, можно вычислить вероятность того, что функция распределения случайной величины x примет значения в интервале путем вычитания. Необходимо подумать о включении или исключении конечных точек.

Будем называть случайную переменную дискретной, если она имеет конечное или счетное бесконечное пространство состояний. Таким образом, X - число головок на трех независимых флипсах смещенной монеты, которая поднимается с вероятностью p. Нужно найти кумулятивную функцию распределения дискретной случайной величины FX для X. Пусть X - количество пиков в коллекции из трех карт. То Y = X3 через FX. FX начинается с 0, заканчивается на 1 и не уменьшается с увеличением значений x. Кумулятивная FX функция распределения дискретной случайной величины X является постоянной, за исключением прыжков. При скачке FX является непрерывной. Доказать утверждение о правильной непрерывности функции распределения из свойства вероятности можно с помощью определения. Звучит оно так: постоянная случайная величина имеет кумулятивную FX, которая дифференцируема.

Чтобы показать, как это может произойти, можно привести пример: мишень с единичным радиусом. Предположительно. дротик равномерно распределяется на указанную область. Для некоторого λ> 0. Таким образом, функции распределения непрерывных случайных величин плавно увеличиваются. FX обладает свойствами функции распределения.

Человек ждет автобуса на остановке, пока тот не прибудет. Решив для себя, что откажется, когда ожидание достигнет 20 минут. Здесь необходимо найти кумулятивную функцию распределения для T. Время, когда человек еще будет находиться на автовокзале или не уйдет. Несмотря на то, что кумулятивная функция распределения определена для каждой случайной величины. Все равно достаточно часто будут использоваться другие характеристики: масса для дискретной переменной и функция плотности распределения случайной величины. Обычно выводится значение через одно из этих двух значений.

Массовые функции

Эти значения рассматриваются следующими свойствами, которые имеют общий (массовый характер). Первое основано на том, что вероятности не отрицательны. Второе следует из наблюдения, что набор для всех x=2S, пространство состояний для X, образует разбиение вероятностной свободы X. Пример: броски необъективной монеты, результаты которой независимы. Можно продолжать выполнять определенные действия, пока не получится бросок голов. Пусть X обозначает случайную величину, которая дает количество хвостов перед первой головой. А p обозначает вероятность в любом заданном действии.

Итак, массовая функция вероятности имеет следующие характерные признаки. Поскольку члены образуют численную последовательность, X называется геометрической случайной величиной. Геометрическая схема c, cr, cr2,. , , , crn имеет сумму. И, следовательно, sn имеет предел при n 1. В этом случае бесконечная сумма является пределом.

Функция массы выше образует геометрическую последовательность с отношением. Следовательно, натуральных чисел a и b. Разность значений в функции распределения равна значению массовой функции.

Рассматриваемые значения плотности имеют определение: X - случайная величина, распределение FX которой имеет производную. FX, удовлетворяющая Z xFX (x) = fX (t) dt-1, называется функцией плотности вероятности. А X называется непрерывной случайной величиной. В основной теореме исчисления функция плотности является производной распределения. Можно вычислить вероятности путем вычисления определенных интегралов.

Поскольку собираются данные по нескольким наблюдениям, то должно рассматриваться более одной случайной величины за раз, чтобы моделировать экспериментальные процедуры. Следовательно, множество этих значений и их совместное распределение для двух переменных X1 и X2 означает просмотр событий. Для дискретных случайных величин определяются совместные вероятностные массовые функции. Для непрерывных рассматриваются fX1, X2, где совместная плотность вероятности удовлетворяется.

Независимые случайные переменные

Две случайные величины X1 и X2 независимы, если любые два связанных с ними события такие же. В словах вероятность того, что два события {X1 2 B1} и {X2 2 B2} происходят одновременно, y равно произведению переменных указанных выше, что каждая из них происходит индивидуально. Для независимых дискретных случайных величин имеется совместная вероятностная массовая функция, которая является произведением предельного объема ионов. Для непрерывных случайных величин являющихся независимыми, совместная функция плотности вероятности - произведение значений предельной плотности. В заключение рассматриваются n независимые наблюдения x1, x2,. , , , xn, возникающие из неизвестной плотности или массовой функции f. Например, неизвестный параметр в функциях для экспоненциальной случайной величины, описывающей время ожидания автобуса.

Имитация случайных переменных

Основная цель этой теоретической области – предоставить инструменты, необходимые для разработки умозаключительных процедур, основанных на обоснованных принципах статистической науки. Таким образом, одним из очень важных вариантов применения программного обеспечения является способность генерировать псевдоданные для имитации фактический информации. Это дает возможность тестировать и совершенствовать методы анализа перед необходимостью использования их в реальных базах. Это требуется для того, чтобы исследовали свойства данных посредством моделирования. Для многих часто используемых семейств случайных величин R предоставляет команды для их создания. Для других обстоятельств понадобятся методы моделирования последовательности независимых случайных величин, которые имеют общее распределение.

Дискретные случайные переменные и образец Command. Команда sample используется для создания простых и стратифицированных случайных выборок. В результате, если вводится последовательность x, sample (x, 40) выбирает 40 записей из x таким образом, что все варианты размера 40 имеют одинаковую вероятность. Это использует команду R по умолчанию для выборки без замены. Можно использовать также для моделирования дискретных случайных величин. Для этого нужно предоставить пространство состояний в векторе x и массовой функции f. Вызов для replace = TRUE указывает, что сэмплирование происходит с заменой. Затем, чтобы дать образец из n независимых случайных величин, имеющих общую массовую функцию f, используется образец (x, n, replace = TRUE, prob = f).

Определено, что 1 является наименьшим представленным значением, а 4 является наибольшим из всех. Если команда prob = f опущена, то образец будет выбирать равномерно из значений в векторе x. Проверить симуляцию против массовой функции, которая генерировала данные, можно обратив внимание на знак двойного равенства, ==. И пересчитав наблюдения, которые принимают каждое возможное значение для x. Можно сделать таблицу. Повторить это для 1000 и сравнить моделирование с соответствующей функцией массы.

Иллюстрирование трансформации вероятности

Сначала смоделировать однородные функции распределения случайных величин u1, u2,. , , , un на интервале [0, 1]. Около 10 % чисел должно находиться в пределах [0,3, 0,4]. Это соответствует 10 % симуляций на интервале [0,28, 0,38] для случайной величины с показанной функцией распределения FX. Точно так же около 10 % случайных чисел должно находиться в интервале [0,7, 0,8]. Это соответствует 10 % симуляций на интервале [0,96, 1,51] случайной величины с функцией распределения FX. Эти значения на x ось может быть получена из взятия обратной от FX. Если X - непрерывная случайная величина с плотностью fX, положительной всюду в своей области, то функция распределения строго возрастает. В этом случае FX имеет обратную функцию FX-1, известную как функция квантиля. FX (x) u только тогда, когда x FX-1 (u). Преобразование вероятности следует из анализа случайной переменной U = FX (X).

FX имеет диапазон от 0 до 1. Он не может принимать значения ниже 0 или выше 1. Для значений u между 0 и 1. Если можно моделировать U, то необходимо имитировать случайную величину с распределением FX через функцию квантиля. Взять производную, чтобы увидеть, что плотность u варьируется в пределах 1. Поскольку случайная величина U имеет постоянную плотность по интервалу своих возможных значений, она называется равномерной на отрезке [0, 1]. Он моделируется в R с помощью команды runif. Идентичность называется вероятностным преобразованием. Видно, как оно работает в примере с дротильной доской. X между 0 и 1, функция распределения u = FX (x) = x2, и, следовательно, функция квантиля x = FX-1 (u). Можно моделировать независимые наблюдения расстояния от центра панели дротика, и создавая при этом равномерные случайные величины U1, U2,. , , Un. Функция распределения и эмпирическая основаны на 100 симуляциях распределения дартс-доски. Для экспоненциальной случайной величины, предположительно u = FX (x) = 1 - exp (- x), и, следовательно, x = - 1 ln (1 - u). Иногда логика состоит из эквивалентных утверждений. В этом случае нужно объединить две части аргумента. Тождество с пересечением аналогично для всех 2 {S i i} S, вместо некоторого значения. Объединение Ci равно пространству состояний S и каждая пара взаимно исключена. Поскольку Bi - разбита на три аксиомы. Каждая проверка основана на соответствующей вероятности P. Для любого подмножества. Используя тождество, чтобы убедиться, что ответ не зависит от того, включены ли конечные точки интервала.

Экспоненциальная функция и ее переменные

Для каждого результата во всех событиях в конечном счете используется второе свойство непрерывности вероятностей, которое считается аксиоматическим. Закон распределения функции случайной величины здесь показывает, что каждой свое решение и ответ.

Комментарии