Арифметическая прогрессия
Задачи по арифметической прогрессии существовали уже в глубокой древности. Они появлялись и требовали решения, поскольку имели практическую необходимость.
Так, в одном из папирусов Древнего Египта, имеющем математическое содержание, – папирусе Райнда (XIX век до нашей эры) – содержится такая задача: раздели десять мер хлеба на десять человек, при условии если разность между каждым из них составляет одну восьмую меры».
И в математических трудах древних греков встречаются изящные теоремы, имеющие отношение к арифметической прогрессии. Так, Гипсикл Александрийский (II век до нашей эры), составивший немало интересных задач и добавивший четырнадцатую книгу к «Началам» Евклида, сформулировал мысль: «В арифметической прогрессии, имеющей четное число членов, сумма членов 2-ой половины больше суммы членов 1-ой на число, кратное квадрату 1/2 числа членов».
Возьмем произвольный ряд натуральных чисел (больше нуля): 1, 4, 7, … n-1,n, …, который называют числовой последовательностью.
Обозначается последовательность an. Числа последовательности называются ее членами и обозначаются обычно буквами с индексами, которые указывают порядковый номер этого члена (a1, a2, a3 … читается: «a 1-ое», «a 2-ое», «a 3-тье» и так далее).
Последовательность может быть бесконечной или конечной.
А что же такое арифметическая прогрессия? Под ней понимают последовательность чисел, получаемую сложением предыдущего члена (n) с одним и тем же числом d, являющимся разностью прогрессии.
Если d<0, то мы имеем убывающую прогрессию. Если d>0, то такая прогрессия считается возрастающей.
Арифметическая прогрессия называется конечной, если учитываются только несколько ее первых членов. При очень большом количестве членов это уже бесконечная прогрессия.
Задается любая арифметическая прогрессия следующей формулой:
an =kn+b, при этом b и k – некоторые числа.
Абсолютно верно утверждение, являющееся обратным: если последовательность задается подобной формулой, то это точно арифметическая прогрессия, которая имеет свойства:
- Каждый член прогрессии - среднее арифметическое предыдущего члена и последующего.
- Обратное: если, начиная со 2-ого, каждый член - среднее арифметическое предыдущего члена и последующего, т.е. если выполняется условие, то данная последовательность – арифметическая прогрессия. Это равенство одновременно является и признаком прогрессии, поэтому его, как правило, называют характеристическим свойством прогрессии.
Точно так же верна теорема, которая отражает это свойство: последовательность - арифметическая прогрессия только в том случае, если это равенство верно для любого из членов последовательности, начиная со 2-ого.
Характеристическое свойство для четырёх любых чисел арифметической прогрессии может быть выражено формулой an + am = ak + al, если n + m = k + l (m, n, k – числа прогрессии).
В арифметической прогрессии любой необходимый (N-й) член найти можно, применяя следующую формулу:
an = a1+d(n–1).
К примеру: первый член (a1) в арифметической прогрессии задан и равен трём, а разность (d) равняется четырём. Найти нужно сорок пятый член этой прогрессии. a45 = 1+4(45-1)=177
Формула an = ak + d(n - k) позволяет определить n-й член арифметической прогрессии через любой ее k-тый член при условии, если он известен.
Сумма членов арифметической прогрессии (подразумевается 1-ые n членов конечной прогрессии) вычисляется следующим образом:
Sn = (a1+an) n/2.
Если известны разность арифметической прогрессии и 1-ый член, то для вычисления удобна другая формула:
Sn = ((2a1+d(n–1))/2)*n.
Сумма арифметической прогрессии, которая содержит n членов, подсчитывается таким образом:
Sn=(a1+an)*n/2.
Выбор формул для расчетов зависит от условий задач и исходных данных.
Натуральный ряд любых чисел, таких как 1,2,3,...,n,...- простейший пример арифметической прогрессии.
Помимо арифметической прогрессии существует еще и геометрическая, которая обладает своими свойствами и характеристиками.