Биссектриса угла треугольника

Что такое биссектриса угла треугольника? На этот вопрос у некоторых людей с языка срывается небезызвестная поговорка: "Это крыса, бегающая по углам и делящая угол пополам". Если ответ должен быть "с юмором", то, возможно, он правилен. Но с научной точки зрения ответ на этот вопрос должен был бы звучать примерно так: "Это луч, начинающийся в вершине угла и делящий последний на две равные части". В геометрии эта фигура также воспринимается как отрезок биссектрисы до ее пересечения с противолежащей сторонй треугольника. Это не является ошибочным мнением. А что еще известно о биссектрисе угла, кроме ее определения?

Как и у любого геометрического места точек, у нее имеются свои признаки. Первый из них - скорее, даже не признак, а теорема, которую можно кратко выразить так: "Если биссектрисой разделить противоположную ей сторону на две части, то их отношение будет соответствовать отношению сторон большого треугольника".

Второе свойство, которое она имеет: точка пересечения биссектрис все углов называется инцентром.

Третий признак: биссектрисы одного внутреннего и двух внешних углов треугольника пересекаются в центре одной из трёх в нее вписанных окружностей.

Четвертое свойство биссектрисы угла треугольника в том, что если каждый из них равен, то последний является равнобедренным.

Пятый признак тоже касается равнобедренного треугольника и является главным ориентиром по его распознаванию на чертеже по биссектрисам, а именно: в равнобедренном треугольнике она одновременно выполняет роль медианы и высоты.

Биссектриса угла может быть построена с помощью циркуля и линейки:

Шестое правило гласит, что невозможно построить треугольник с помощью последних только при имеющихся биссектрисах, как и невозможно построить таким способом удвоение куба, квадратуру круга и трисекцию угла. Собственно говоря, это и есть все свойства биссектрисы угла треугольника.

Если вы внимательно читали предыдущий абзац, то, возможно, вас заинтересовало одно словосочетание. "Что такое трисекция угла?" - наверняка спросите вы. Триссектриса немного схожа с биссектрисой, но если начертить последнюю, то угол поделится на две равные части, а при построении трисекции - на три. Естественно, что биссектриса угла запоминается легче, ведь трисекцию в школе не учат. Но для полноты картины расскажу и о ней.

Триссектрису, как я уже сказала, нельзя построить только циркулем и линейкой, но ее возможно создать с помощью правил Фудзиты и некоторых кривых: улитки Паскаля, квадратрисы, конхоиды Никомеда, конических сечений, спирали Архимеда.

Задачи по трисекции угла достаточно просто решаются при помощи невсиса.

В геометрии существует теорема о триссектрисах угла. Называется она теоремой Морли (Морлея). Она утверждает, что точки пересечения находящихся посередине триссектрис каждого угла будут вершинами равностороннего треугольника.

Маленький черный треугольник внутри большого всегда будет равносторонним. Эта теорема была открыта британским ученым Фрэнком Морли в 1904 году.

Вот сколько всего можно узнать о разделении угла: триссектриса и биссектриса угла всегда требуют детальных объяснений. А ведь здесь было приведено множество еще не раскрытых мной определений: улитка Паскаля, конхоида Никомеда и т.д. Не сомневайтесь, о них можно написать еще больше.

Комментарии