Прежде чем приводить примеры окислительно-восстановительных реакций с решением, выделим основные определения, связанные с данными превращениями.
Те атомы или ионы, которые в ходе взаимодействия меняют степень окисления с понижением (принимают электроны), называют окислителями. Среди веществ, обладающих такими свойствами, можно отметить сильные неорганические кислоты: серную, соляную, азотную.
Окислитель
Также к сильным окислителям относятся перманганаты и хроматы щелочных металлов.
Окислитель принимает то количество электронов в ходе реакции, которое необходимо ему до завершения энергетического уровня (установления завершенной конфигурации).
Восстановитель
Любая схема окислительно-восстановительной реакции предполагает выявление восстановителя. К нему относят ионы или нейтральные атомы, способные повышать в ходе взаимодействия показатель степени окисления (отдают электроны иным атомам).
В качестве типичных восстановителей можно привести атомы металлов.
Процессы в ОВР
Чем еще характеризуются ОВР? Окислительно-восстановительные реакции характеризуются изменением степеней окисления у исходных веществ.
Окисление предполагает процесс отдачи отрицательных частиц. Восстановление предполагает принятие их от других атомов (ионов).
Алгоритм разбора
Примеры окислительно-восстановительных реакций с решением предлагаются в различных справочных материалах, предназначенных для подготовки старшеклассников к выпускным испытаниям по химии.
Для того чтобы успешно справиться с предлагаемые в ОГЭ и ЕГЭ заданиями, важно владеть алгоритмом составления и разбора окислительно-восстановительных процессов.
- В первую очередь проставляют зарядовые величины у всех элементов в веществах, предложенных в схеме.
- Выписываются атомы (ионы) из левой части реакции, которые в ходе взаимодействия, поменяли показатели.
- При повышении степени окисления используется знак «-», а при понижении «+».
- Между отданными и принятыми электронами определяется наименьшее общее кратное (число, на которое они делятся без остатка).
- При делении НОК на электроны, получаем стереохимические коэффициенты.
- Расставляем их перед формулами в уравнение.
Первый пример из ОГЭ
В девятом классе далеко не все школьники знают, как решать окислительно-восстановительные реакции. Именно поэтому они допускают множество ошибок, не получают высоких баллов за ОГЭ. Алгоритм действий приведен выше, теперь попробуем отработать его на конкретных примерах.
Особенность заданий, касающихся расстановки коэффициентов в предложенной реакции, выданных выпускникам основной ступени обучения, в том, что и левая, и правая части уравнения даны.
Это существенно упрощает задачу, так как не нужно самостоятельно придумывать продукты взаимодействия, подбирать недостающие исходные вещества.
Например, предлагается с помощью электронного баланса выявить коэффициенты в реакции:
CuO+Fe=FeO+Cu
На первый взгляд, в данной реакции не требуются стереохимические коэффициенты. Но, для того, чтобы подтвердить свою точку зрения, необходимо у всех элементов зарядовые числа.
В бинарных соединениях, к которым относится оксид меди (2) и оксид железа (2), сумма степеней окисления равна нулю, учитывая, что у кислорода она -2, у меди и железа данный показатель +2. Простые вещества не отдают (не принимают) электроны, поэтому для них характерна нулевая величина степени окисления.
Составим электронный баланс, показав знаком "+" и "-" количество принятых и отданных в ходе взаимодействия электронов.
Cu2++2e=Cu0;
Fe0-2e=Fe2+.
Так как количество принятых и отданных в ходе взаимодействия электронов одинаково, нет смысла находить наименьшее общее кратное, определять стереохимические коэффициенты, ставить их в предложенную схему взаимодействия.
Для того чтобы получить за задание максимальный балл, необходимо не только записать примеры окислительно-восстановительных реакций с решением, но и выписать отдельно формулу окислителя (CuO) и восстановителя (Fe).
Второй пример с ОГЭ
Приведем еще примеры окислительно-восстановительных реакций с решением, которые могут встретиться девятиклассникам, выбравшим химию в качестве выпускного экзамена.
Допустим, предлагается расставить коэффициенты в уравнении:
Na+HCl=NaCl+H2.
Для того чтобы справиться с поставленной задачей, сначала важно определить у каждого простого и сложного вещества показатели степеней окисления. У натрия и водорода они будут равны нулю, так как они являются простыми веществами.
В соляной кислоте водород имеют положительную, а хлор - отрицательную степень окисления. После расстановки коэффициентов получим реакцию с коэффициентами.
Первый образец задания из ЕГЭ
Как дополнить окислительно-восстановительные реакции? Примеры с решением, встречающиеся на ЕГЭ (11 класс), предполагают дополнение пропусков, а также расстановку коэффициентов.
Например, нужно электронным балансом дополнить реакцию:
H2S+ HMnO4= S+ MnO2 +…
Определите восстановитель и окислитель в предложенной схеме.
Как научиться составлять окислительно-восстановительные реакции? Образец предполагает использование определенного алгоритма.
Сначала во всех веществах, данных по условию задачи, необходимо поставить степени окисления.
Далее нужно проанализировать, какое вещество может стать неизвестным продуктом в данном процессе. Поскольку в здесь присутствует окислитель (в его роли выступает марганец), восстановитель (им является сера), в искомом продукте не меняются степени окисления, следовательно, это вода.
Рассуждая о том, как правильно решать окислительно-восстановительные реакции, отметим, что следующим этапом будет составление электронного соотношения:
Mn+7 принимает 3 e= Mn+4;
S-2 отдает 2e= S0.
Катион марганца является восстановителем, а анион серы – типичный окислитель. Поскольку наименьшим кратным между принятыми и отданными электронами будет 6, получаем коэффициенты: 2, 3.
Последним этапом будет постановка коэффициентов в исходное уравнение.
3H2S+ 2HMnO4= 3S+ 2MnO2+ 4H2O.
Второй образец ОВР в ЕГЭ
Как правильно составить окислительно-восстановительные реакции? Примеры с решением помогут отработать алгоритм действий.
Предлагается методом электронного баланса заполнить пропуски в реакции:
PH3+ HMnO4 = MnO2 +…+…
Расставляем у всех элементов степени окисления. В данном процессе окислительные свойства проявляются марганцем, входящим в состав марганцовой кислоты, а восстановителем должен быть фосфор, меняя свою степень окисления на положительную в фосфорной кислоте.
Согласно сделанному предположению, получаем схему реакции, затем составляем уравнение электронного баланса.
P-3 отдает 8 e и превращается в P+5;
Mn+7 принимает 3e, переходя в Mn+4.
НОК будет 24, поэтому у фосфора должен присутствовать стереометрический коэффициент 3, а у марганца -8.
Ставим коэффициенты в полученный процесс, получаем:
3 PH3+ 8 HMnO4= 8 MnO2+ 4H2O+ 3 H3PO4.
Третий пример из ЕГЭ
Путем электронно-ионного баланса нужно составить реакцию, указать восстановитель и окислитель.
KMnO4+ MnSO4+…= MnO2 +…+ H2SO4.
По алгоритму расставляем у каждого элемента степени окисления. Далее определяем те вещества, что пропущены в правой и левой частях процесса. Здесь дан восстановитель и окислитель, поэтому в пропущенных соединениях степени окисления не меняются. Упущенным продуктом станет вода, а исходным соединением – сульфат калия. Получаем схему реакции, для которой составим электронный баланс.
Mn+2-2 e= Mn+4 3 восстановитель;
Mn+7+3e= Mn+4 2 окислитель.
Записываем коэффициенты в уравнение, суммируя атомы марганца в правой части процесса, так как он относится к процессу диспропорционирования.
2KMnO4+ 3MnSO4+ 2H2O= 5MnO2+ K 2SO4+ 2H2SO4.
Заключение
Окислительно-восстановительные реакции имеют особое значение для функционирования живых организмов. Примерами ОВР являются процессы гниения, брожения, нервной деятельности, дыхания, обмена веществ.
Окисление и восстановление актуальны для металлургической и химической промышленности, благодаря таким процессам можно восстанавливать металлы из их соединений, защищать от химической коррозии, подвергать обработке.
Для составления окислительно-восстановительного процесса в органической или неорганической химии необходимо использовать определенный алгоритм действий. Сначала в предложенной схеме расставляют степени окисления, потом определяют те элементы, которые повысили (понизили) показатель, записывают электронный баланс.
Далее между принятыми и отданными электронами необходимо определить наименьшее кратное, вычислить математическим путем коэффициенты.
При соблюдении последовательности действий, предложенной выше, можно без проблем справиться с заданиями, предлагаемыми в тестах.
Помимо метода электронного баланса, расстановка коэффициентов возможна также путем составления полуреакций.