Активный транспорт веществ через мембрану. Виды активного транспорта веществ через мембрану

Клетка – структурная единица всего живого на нашей планете и открытая система. Это значит, что для ее жизнедеятельности необходим постоянный обмен веществами и энергией с окружающей средой. Этот обмен осуществляется через мембрану – главную границу клетки, которая призвана сохранить ее целостность. Именно через мембрану осуществляется клеточный обмен и идет он либо по градиенту концентрации какого-либо вещества, либо против. Активный транспорт через цитоплазматическую мембрану – процесс сложный и энергозатратный.

активный транспорт

Мембрана – барьер и шлюз

Цитоплазматическая мембрана входит в состав многих клеточных органелл, пластид и включений. Современная наука основана на жидкостно-мозаичной модели структуры мембран. Активный транспорт веществ через мембрану возможен благодаря ее специфическому строению. Основу мембран образует липидный бислой – в основном это фосфолипиды, расположенные в соответствии со своими гидрофильно-гидрофобными свойствами. Главные свойства липидного бислоя - это текучесть (способность встраивать и терять участки), самосборка и ассиметричность. Второй компонент мембран – белки. Их функции многообразны: активный транспорт, рецепция, ферментация, узнавание.

Располагаются белки как на поверхности мембран, так и внутри, а некоторые по несколько раз пронизывают ее. Свойство белков в мембране – способность к переходу с одной стороны мембраны на другую («флип-флоп» перескок). И последний компонент – сахаридные и полисахаридные цепочки углеводов на поверхности мембран. Функции их и сегодня спорны.

активный транспорт веществ через мембрану

Виды активного транспорта веществ через мембрану

Активным будет такой перенос веществ через мембрану клетки, который является контролируемым, происходит с затратами энергии и идет против градиента концентрации (вещества переносятся из области с низкой концентрацией в область с высокой концентрацией). В зависимости от того, какой источник энергии используется, выделяют следующие виды транспорта:

  • Первично активный (источник энергии – гидролиз аденозинтрифосфорной кислоты АТФ до аденозиндифосфорной АДФ).
  • Вторично активный (обеспечивается вторичной энергией, созданной в результате работы механизмов первично активного транспорта веществ).

активный транспорт веществ

Белки-помощники

И в первом, и во втором случае транспорт невозможен без белков-переносчиков. Эти транспортные белки очень специфичны и предназначаются для переноса определенных молекул, а иногда даже определенной разновидности молекул. Это было доказано экспериментально на мутировавших генах бактерий, что приводило к невозможности активного транспорта через мембрану определенного углевода. Трансмембранные белки-переносчики могут быть собственно переносчиками (они взаимодействуют с молекулами и непосредственно проносят ее через мембрану) или каналообразующими (формируют поры в мембранах, которые открыты для специфичных веществ).

активный транспорт через мембрану

Насос для натрия и калия

Наиболее изученным примером первичного активного транспорта веществ через мембрану является Na+ -, К+ -насос. Этот механизм обеспечивает разность концентраций ионов Na+ и К+ по обеим сторонам мембраны, что необходимо для поддержания осмотического давления в клетке и других обменных процессов. Трансмембранный белок-переносчик – натрий-калиевая АТФ-аза – состоит из трех частей:

  • На наружной стороне мембраны у белка расположены два рецептора для ионов калия.
  • На внутренней стороне мембраны – три рецептора для ионов натрия.
  • Внутренней части белка свойственна АТФ активность.

Когда два иона калия и три иона натрия связываются с рецепторами белка по обе стороны мембраны, включается АТФ активность. Молекула АТФ гидролизируется до АДФ с выделением энергии, которая затрачивается на перенос ионов калия внутрь, а ионов натрия наружу цитоплазматической мембраны. Подсчитано, что коэффициент полезного действия такого насоса составляет более 90%, что само по себе довольно удивительно.

Для справки: КПД двигателя внутреннего сгорания – порядка 40%, электрического - до 80%. Интересно, что насос может работать и в обратном направлении и служить донором фосфатов для синтеза АТФ. Для некоторых клеток (например, нейронов) характерны траты до 70% всей энергии на вынос натрия из клетки и накачивание внутрь ионов калия. По такому же принципу активного транспорта работают насосы для кальция, хлора, водорода и некоторых других катионов (ионов с положительным зарядом). Для анионов (отрицательно заряженных ионов) таких насосов не обнаружено.

виды активного транспорта веществ через мембрану

Котранспорт углеводов и аминокислот

Примером вторичного активного транспорта может служить перенос в клетки глюкозы, аминокислот, йода, железа и мочевой кислоты. В результате работы калий-натриевого насоса создается градиент концентраций натрия: снаружи концентрация высокая, а внутри – низкая (иногда в 10-20 раз). Натрий стремится диффундировать в клетку и энергия этой диффузии может быть использована для транспорта веществ наружу. Это механизм называют котранспортом или сопряженным активным транспортом. В этом случае у белка-переносчика имеется два рецепторных центра с наружной части: один для натрия, а другой – для транспортируемого элемента. Только после активации обоих рецепторов белок подвергается конформационным изменениям, и энергия диффузии натрия вводит в клетку транспортируемое вещество против градиента концентрации.

виды активного транспорта веществ через мембрану

Значение активного транспорта для клетки

Если бы обычная диффузия веществ через мембрану протекала сколь угодно долго, концентрации их снаружи и внутри клетки выровнялись бы. А это для клеток гибель. Ведь все биохимические процессы должны протекать в среде электрической разности потенциалов. Без активного, против градиента концентрации, транспорта веществ нейроны не смогли бы передавать нервный импульс. А мышечные клетки утратили бы возможность сокращаться. Клетка бы не смогла поддерживать осмотическое давление и сплющилась бы. А продукты метаболизма не выводились бы наружу. Да и гормоны никогда не попали бы в кровяное русло. Ведь даже амеба тратит энергию и создает разность потенциалов на своей мембране при помощи все тех же ионных насосов.

Статья закончилась. Вопросы остались?
Комментарии 0
Подписаться
Я хочу получать
Правила публикации
Редактирование комментария возможно в течении пяти минут после его создания, либо до момента появления ответа на данный комментарий.