Если перефразировать известное выражение «движение – это жизнь», становится понятным, что все проявления живой материи - рост, размножение, процессы синтеза питательных веществ, дыхание - являются, по сути, движением атомов и молекул, входящих в состав клетки. Возможны ли эти процессы без участия энергии? Конечно, нет.
Откуда же живые тела, начиная от гигантских организмов, например, таких как синий кит или американская секвойя, и заканчивая ультрамикроскопическими бактериями, черпают ее запасы?
Биохимия нашла ответ на этот вопрос. Аденозинтрифосфорная кислота – вот универсальное вещество, используемое всеми обитателями нашей планеты. В этой статье мы рассмотрим строение и функции АТФ у различных групп живых организмов. Кроме этого, определим, какие органеллы ответственны за его синтез в растительных и животных клетках.
История открытия
В начале ХХ века в лаборатории Гарвардской медицинской школы несколько ученых, а именно Суббарис, Ломан и Фриске, обнаружили соединение, близкое по строению к адениловому нуклеотиду рибонуклеиновых кислот. Однако оно содержало не один, а целых три остатка фосфатной кислоты, соединенных с моносахаридом рибозой. Через два десятка лет Ф. Липман, изучая функции АТФ, подтвердил научное предположение о том, что данное соединение переносит энергию. С этого момента биохимикам представилась прекрасная возможность детально ознакомиться со сложным механизмом синтеза данного вещества, происходящего в клетке. В дальнейшем было открыто ключевое соединение: фермент - АТФ-синтаза, отвечающий за образование молекул кислоты в митохондриях. Чтобы определить, какую функцию выполняет АТФ, выясним, какие же процессы, протекающие в живых организмах, не могут осуществиться без участия этого вещества.
Формы существования энергии в биологических системах
Многообразные реакции, происходящие в живых организмах, требуют различных видов энергии, способных трансформироваться друг в друга. К ним относятся механические процессы (движение бактерий и простейших, сокращение миофибрилл в мышечной ткани), биохимический синтез. В этот список также входят электрические импульсы, лежащие в основе возбуждения и торможения, тепловые реакции, поддерживающие постоянную температуру тела у теплокровных животных и человека. Люминесцентное свечение морского планктона, некоторых насекомых и глубоководных рыб тоже относится к разновидностям энергии, продуцируемой живыми телами.
Все выше описанные явления, происходящие в биологических системах, невозможны без молекул АТФ, функции которых заключаются в запасании энергии в виде макроэргических связей. Они возникают между адениловым нуклеозидом и остатками фосфатной кислоты.
Откуда берется клеточная энергия?
Согласно законам термодинамики, появление и исчезновение энергии происходит по определенным причинам. Расщепление органических соединений, входящих в состав пищи: белков, углеводов и особенно липидов приводит к выделению энергии. Первичные процессы гидролиза происходят в пищеварительном тракте, где макромолекулы органических соединений подвергаются действию ферментов. Часть полученной энергии рассеивается в виде тепла или идет на поддержание оптимальной температуры внутреннего содержимого клетки. Оставшаяся же порция аккумулируется в виде в митохондриях – силовых станциях клетки. Это и есть основная функция молекулы АТФ – обеспечение и пополнение энергетических потребностей организма.
Какова роль катаболических реакций
Элементарная единица живой материи – клетка, может функционировать только при условии постоянного обновления энергии в ее жизненном цикле. Для выполнения этого условия в клеточном метаболизме существует направление, названное диссимиляцией, катаболизмом или энергетическим обменом. В его бескислородном этапе, являющемся самым простым способом образования и запасания энергии, из каждой молекулы глюкозы, при условии отсутствия кислорода, синтезируется 2 молекулы энергоемкого вещества, обеспечивающего главные функции АТФ в клетке – снабжение ее энергией. Большинство реакций бескислородного этапа происходит в цитоплазме.
В зависимости от того, каково строение клетки, он может протекать различными путями, например, в виде гликолиза, спиртового или молочнокислого брожения. Однако биохимические особенности этих метаболических процессов не влияют на то, какую функцию выполняет АТФ в клетке. Она универсальна: сохранить энергетические запасы клетки.
Как строение молекулы связано с ее функциями
Ранее мы установили тот факт, что в составе аденозинтрифосфорной кислоты находится три фосфатных остатка, соединенных с нитратным основанием – аденином, и моносахаридом – рибозой. Так как практически все реакции в цитоплазме клетки осуществляются в водной среде, молекулы кислоты под действием гидролитических ферментов разрывают ковалентные связи с образованием сначала аденозиндифосфорной кислоты, а затем АМФ. Обратные реакции, приводящие к синтезу аденозинтрифосфорной кислоты, происходят в присутствии фермента фосфотрансферазы. Так как АТФ выполняет функцию универсального источника клеточной жизнедеятельности, в нее входят две макроэргические связи. При последовательном разрыве каждой из них выделяется по 42 кДж. Этот ресурс используется в метаболизме клетки, в ее ростовых и репродуктивных процессах.
Значение АТФ-синтаз
В органеллах общего значения - митохондриях, находящихся в растительных и животных клетках, расположена ферментативная система - дыхательная цепь. Она содержит энзим – АТФ-синтазу. Молекулы биокатализатора, имеющие вид гексамера, состоящего из глобул протеина, погружены как в мембрану, так и в строму митохондрии. Благодаря активности фермента, из АДФ и остатков неорганической фосфатной кислоты происходит синтез энергетического вещества клетки. Образовавшиеся молекулы АТФ выполняют функцию аккумулирования энергии, необходимой для ее жизнедеятельности. Отличительной чертой биокатализатора является то, что при избыточной концентрации энергетических соединений он ведет себя как гидролитический фермент, расщепляя их молекулы.
Особенности синтеза аденозинтрифосфорной кислоты
Растения имеют серьезную особенность обмена веществ, кардинально отличающую эти организмы от животных. Она связана с автотрофным способом питания и способностью к процессу фотосинтеза. Образование молекул, содержащих макроэргические связи, происходит у растений в клеточных органоидах – хлоропластах. Уже известный нам фермент АТФ-синтаза входит у них в состав тилакоидов и стромы хлоропластов. Функции АТФ в клетке – это запасание энергии как у автотрофных, так и гетеротрофных организмов, в том числе человека.
Соединения с макроэргическими связями синтезируются у сапротрофов и гетеротрофов в реакциях окислительного фосфорилирования, проходящих на кристах митохондрий. Как видим, в процессе эволюции у различных групп живых организмов сформировался совершенный механизм синтеза такого соединения, как АТФ, функции которого заключаются в обеспечении клетки энергией.