В мире существовало и существует до сих пор множество различных систем измерения величин. Они служат для того, чтобы люди могли обмениваться различной информацией, например, при совершении сделок, назначении препаратов или разработке руководств к использованию техники. Для того чтобы не возникало путаницы, была разработана Интернациональная система измерения физических величин.
Что такое система измерения физических величин?
Такое понятие, как система единиц физических величин, или просто система СИ, часто может встретиться не только на школьных уроках физики и химии, но и в повседневной жизни. В современном мире люди как никогда нуждаются в том, чтобы определенная информация – например, время, вес, объем – была выражена наиболее объективно и структурировано. Именно для этого и была создана единая система измерений – совокупность официально принятых единиц измерений, рекомендуемых для использования в быту и науке.
Какие системы измерения существовали до появления системы СИ
Конечно, потребность в мерах существовала у человека всегда, однако, как правило, эти меры не были официальными, определялись через подручные материалы. А значит, не имели эталона и могли различаться от случая к случаю.
Ярким примером может служить принятая на Руси система мер длины. Пядь, локоть, аршин, сажень – все эти единицы изначально были привязаны к частям тела – ладони, предплечью, расстоянию между раскинутыми руками. Конечно, в результате конечные измерения были неточными. Впоследствии государство прилагало усилия, чтобы стандартизировать эту систему измерения величин, но она все равно оставалась неидеальной.
В других странах существовали свои системы измерения физических величин. Например, в Европе была распространена английская система мер – футы, дюймы, мили и др.
Зачем нужна система СИ?
В XVIII-XIX веках процесс глобализации стал активным. Все больше стран начали устанавливать международные контакты. Кроме того, своего апогея достигла научно-техническая революция. Ученые по всему миру не могли эффективно обмениваться результатами своих научных изысканий из-за того, что они пользовались разными системами измерения физических величин. Во многом из-за таких нарушений связей внутри мирового научного сообщества многие физические и химические законы «открывались» несколько раз разными учеными, что сильно тормозило развитие науки и техники.
Таким образом, сформировалась потребность в единой системе измерения физических единиц, которая бы не только позволила ученым по всему миру сверять результаты своих трудов, но и оптимизировала процесс мировой торговли.
История возникновения Международной системы измерения
Для того чтобы структурировать физические величины и измерение физических величин, система единиц, единая для всего мирового сообщества, стала необходима. Однако создать такую систему, которая бы отвечала всем требованиям и была наиболее объективной, – это действительно трудная задача. Основой будущей системы СИ стала метрическая система, которая получила свое распространение в XVIII веке после Великой французской революции.
Точкой отсчета, с которой началось развитие и совершенствование Интернациональной системы измерения физических величин, можно считать 22 июня 1799 года. Именно в этот день были утверждены первые эталоны – метр и килограмм. Они были выполнены из платины.
Несмотря на это, официально Международная система единиц была принята только в 1960 году на 1-й генеральной конференции по мерам и весам. В нее были включены 6 основных единиц измерения физических величин: секунда (время), метр (длина), килограмм (масса), кельвин (термодинамическая температура), ампер (сила тока), кандела (сила света).
В 1964 году к ним была добавлена седьмая величина – моль, которой измеряется количество вещества в химии.
Кроме того, существуют также производные единицы, которые могут быть выражены через основные с помощью простейших алгебраических действий.
Основные единицы измерения в системе СИ
Так как основные единицы системы физических величин должны были быть максимально объективными и не зависеть от внешних условий, таких как давление, температура, расстояние от экватора и другие, то к формулированию их определений и эталонов нужно было отнестись фундаментально.
Рассмотрим каждую из основных единиц системы измерения физических величин подробнее.
- Секунда. Единица измерения времени. Это относительно легкая для выражения величина, так как она напрямую связана с периодом обращения Земли вокруг Солнца. Секунда – это 1/31536000 года. Существуют, однако, и более сложные способы замерить эталон секунды, связанные с периодами излучения атома цезия. Этот способ сводит погрешность к минимуму, чего требует современный уровень развития науки и технологий.
- Метр. Единица измерения длины и расстояний. В разное время метр пытались выразить как часть экватора или с помощью математического маятника, но все эти способы были недостаточно точными, так что конечное значение могло варьироваться в пределах миллиметров. Такая погрешность является критической, поэтому долгое время ученые искали более точные способы определения эталона метра. На данный момент за один метр принята длина пути, проходимого светом за (1/299 792 458) секунды.
- Килограмм. Единица измерения массы. На сегодняшний день килограмм является единственной величиной, определяемой через вещественный эталон, который хранится в штаб-квартире Международного бюро мер и весов. Со временем эталон немного изменяет свою массу из-за процессов коррозии, а также скопления пыли и других мелких частиц на его поверхности. Именно поэтому планируется и его величину в скором времени выразить через фундаментальные физические свойства.
- Кельвин. Единица измерения термодинамической температуры. Кельвин равен 1/273,16 части термодинамической температуры тройной точки воды. Это такая температура, при которой вода находится сразу в трех состояниях - жидком, твердом и газообразном. Градусы Цельсия переводятся в Кельвины по формуле: t К = t C° + 273
- Ампер. Единица измерения силы тока. Неизменяющийся ток, при прохождении которого по двум параллельным прямым проводникам с минимальной площадью сечения и бесконечной длиной, находящимся на расстоянии 1 метра друг от друга (на каждом участке этих проводников возникает сила, равная 2·10-7Н), равен 1 амперу.
- Кандела. Единица измерения силы света – светимости источника в определенном направлении. Специфическая величина, которая крайне редко используется на практике. Значение единицы выводится через частоту излучения и энергетическую силу света.
- Моль. Единица количества вещества. На данный момент моль – это единица, являющаяся разной для разных химических элементов. Она численно равна массе мельчайшей частицы этого вещества. В будущем планируется точно выразить один моль, используя число Авогадро. Для этого, однако, требуется уточнить значение самого числа Авогадро.
Приставки, принятые в системе СИ и что они означают
Для удобства использования основных единиц физических величин в системе СИ на практике был принят перечень универсальных приставок, с помощью которых образуются дробные и кратные единицы.
Производные единицы
Очевидно, что существует намного больше семи физических величин, а значит, нужны и единицы, в которых эти величины должны измеряться. Для каждой новой величины выводится новая единица, которая может быть выражена через основные с помощью простейших алгебраических действий, например деления или умножения.
Интересно, что, как правило, производные единицы называются в честь великих ученых или исторических лиц. К примеру, единица измерения работы – Джоуль или единица измерения индуктивности – Генри. Существует множество производных единиц – всего более двадцати.
Внесистемные единицы
Несмотря на широкое распространение и повсеместное применение единиц системы физических величин СИ, во многих отраслях все еще применяются на практике внесистемные единицы измерения. Например, в судоходстве – морская миля, в ювелирном деле – карат. В повседневной жизни нам известны такие внесистемные единицы, как сутки, процент, диоптрия, литр и многие другие.
Нужно помнить, что, несмотря на их привычность, при решении физических или химических задач внесистемные единицы нужно обязательно переводить в единицы измерения физических величин в системе СИ.