Что такое ломаная: определение, свойства и особенности

Ломаные линии - удивительные геометрические фигуры, которые окружают нас повсюду, но мы часто этого не замечаем. Давайте разберемся, что же такое ломаная, изучим ее свойства и научимся находить в окружающем мире.

Что такое ломаная: определение и основные свойства

Ломаная линия – это геометрическая фигура, состоящая из отрезков, последовательно соединенных своими концами. Концы соседних отрезков называются вершинами ломаной, а сами отрезки – ее звеньями.

Ломаная линия – математическая фигура, включающая в себя несколько отрезков, которые меняют направление.

Основное свойство ломаной – отсутствие прямолинейных участков. Ломаная может не иметь изгибов на отдельных звеньях, но в целом она не является прямой линией.

Классификация ломаных

Различают два основных вида ломаных:

  • Замкнутая ломаная – начальная и конечная точки совпадают:
  • Незамкнутая ломаная – концы не совпадают:

Также выделяют самопересекающиеся ломаные, у которых некоторые звенья пересекаются между собой. Это могут быть как замкнутые, так и незамкнутые ломаные.

Чем ломаные отличаются от других линий

Ломаные отличаются от прямой линии тем, что не имеют участков с углом поворота 180 градусов. От кривой ломаная отличается тем, что состоит из прямолинейных звеньев с четкими углами поворота.

Многоугольное светящееся окно с разноцветной подсветкой

Параметры ломаной линии

Рассмотрим основные числовые характеристики, которые используются для описания ломаной линии.

Длина ломаной и как ее найти

Длина ломаной равна сумме длин всех звеньев:

Где AB , BC , CD – звенья ломаной ABCD .

Длина замкнутой ломаной без самопересечений называется периметром и обозначается буквой P :

Страница тетради с нарисованными ломаными линиями

Число звеньев

Ломаная линия может состоять из двух, трех, четырех и более звеньев. Например, ломаная из трех звеньев:

Число вершин

Число вершин ломаной на единицу больше числа звеньев. Например, для ломаной из 3 звеньев число вершин равно 4.

Число звеньев 2 3 4
Число вершин 3 4 5

Углы поворота

Ломаная характеризуется углами поворота в каждой из своих вершин. Угол поворота – это угол между смежными звеньями ломаной.

На приведенном выше рисунке ломаной ABCD в вершине B угол поворота составляет около 60 градусов.

Применение ломаных линий на практике

Несмотря на простоту определения, ломаные линии широко используются в науке, технике и искусстве. Рассмотрим некоторые примеры.

Ломаные в инженерных конструкциях

Ломаные формы часто используются в строительстве мостов, эстакад, опор линий электропередач. Это позволяет добиться большей прочности и устойчивости по сравнению с прямолинейными конструкциями:

Ломаные линии в экономике и на фондовых рынках

Графики цен акций, валютных курсов и других финансовых инструментов представляют собой ломаные линии. Здесь ломаная отображает последовательное изменение значений во времени:

Анализируя форму ломаной, трейдеры пытаются прогнозировать дальнейшее направление тренда на рынке.

Ломаные в компьютерной графике

В векторных графических редакторах ломаные используются повсеместно. С помощью отрезков и их соединений создаются сложные изображения – от простых геометрических фигур до логотипов, иллюстраций, инфографики.

Даже кривые линии в векторной графике на самом деле состоят из большого числа мелких отрезков-звеньев, образующих ломаную.

Ломаные линии в архитектуре

В архитектуре ломаные формы используются достаточно часто. Это могут быть крыши домов, башен, элементы фасада:

  • Ступенчатые крыши в восточных храмах;
  • Зубчатые стены и башни средневековых замков;
  • Пирамидальные крыши на башнях готических соборов;
  • Ломаные карнизы и цоколи в классицизме.

Такие формы придают зданиям неповторимый вид, подчеркивая их индивидуальные черты и архитектурный стиль.

Прочие области применения ломаных

Кроме перечисленных выше сфер, ломаные линии встречаются:

  • В электротехнике при изображении графиков напряжения и силы тока;
  • В картографии, где ломаная линия обозначает маршрут;
  • В начертательной геометрии – для построения разверток объемных тел;
  • В художественном творчестве – как элементы композиции.

Как изобразить ломаную линию

Давайте разберем, как можно построить ломаную линию вручную или с помощью программных средств.

Инструменты для построения ломаных

Для рисования ломаных на бумаге используют:

  • Линейку или угольник – для проведения отрезков;
  • Циркуль – для построения окружностей и дуг;
  • Транспортир – для контроля и задания углов.

В графических редакторах основным инструментом для создания ломаной линии является перо.

Пошаговая инструкция для рисования простой ломаной

Для построения простой ломаной линии необходимо:

  1. Выбрать начальную точку А и провести из нее первый отрезок произвольной длины;
  2. В конце этого отрезка построить вторую точку B и повернуть линейку на некоторый угол;
  3. Из точки B провести второй отрезок;
  4. Повторять шаги 2-3 до тех пор, пока ломаная не достигнет нужной длины.

Число поворотов ломаной определяет число ее звеньев. Чем меньше звеньев, тем проще фигура.

Особенности построения замкнутой ломаной

При создании замкнутой ломаной последний отрезок должен соединить последнюю точку с начальной A. Так ломаная замыкается в фигуру.

Замкнутую ломаную удобно строить циркулем, используя дуги окружности в качестве звеньев. Например, правильные многоугольники строят именно таким образом.

Как нарисовать самопересекающуюся ломаную

Чтобы ломаная пересекала саму себя, нужно:

  1. Построить простую ломаную линию из 3-4 звеньев;
  2. Дорисовать дополнительное звено так, чтобы оно пересекло одно из имеющихся;
  3. При необходимости добавить еще звенья для создания новых точек пересечения.

Пересечения бывают внешние (между разными звеньями) и внутренние (звено пересекает само себя). Оба варианта допустимы.

Статья закончилась. Вопросы остались?
Комментарии 0
Подписаться
Я хочу получать
Правила публикации
Редактирование комментария возможно в течении пяти минут после его создания, либо до момента появления ответа на данный комментарий.