Каждый из нас сталкивался с понятиями такой науки, как химия. Иногда они так похожи, что трудно отличить одно от другого. Но очень важно разбираться во всех них потому, что иногда такое непонимание приводит к очень глупым ситуациям, а иногда и к непростительным ошибкам. В этой статье мы расскажем, что такое гидриды, какие из них опасны, а какие нет, где они применяются и как получаются. Но начнём с краткого экскурса в историю.
История
Свою историю гидриды начинают с открытия водорода. Этот элемент ещё в 18 веке нашел Генри Кавендиш. Водород, как известно, входит в состав воды и является основой всех остальных элементов таблицы Менделеева. Благодаря ему возможно существование органических соединений и жизни на нашей планете.
Кроме того, водород является основой и для многих неорганических соединений. В их числе кислоты и щёлочи, а также уникальные бинарные соединения водорода с другими элементами - гидриды. Дата их первого синтеза точно неизвестна, но гидриды неметаллов были известны человеку ещё с древности. Самый распространенный из них - вода. Да, вода - это гидрид кислорода.
Также к этому классу относят аммиак (основной компонент нашатырного спирта), сероводород, хлороводород и им подобные соединения. Более подробно о свойствах веществ из этого многообразного и удивительного класса соединений мы поговорим в следующем разделе.
Физические свойства
Гидриды - это в большинстве своём газы. Однако, если брать гидриды металлов (они неустойчивы в обычных условиях и очень быстро реагируют с водой), то это могут быть и твёрдые вещества. Некоторые из них (например, бромоводород) существуют и в жидком состоянии.
Дать общую характеристику такому огромному классу веществ просто невозможно, ведь они все различны и, в зависимости от элемента, входящего в состав гидрида, помимо водорода, имеют разные физические характеристики и химические свойства. Но их можно разделить по классам, соединения в которых чем-то схожи. Ниже рассмотрим отдельно каждый класс.
Ионные гидриды - это соединения водорода с щелочными или щёлочноземельными металлами. Они представляют собой вещества белого цвета, устойчивые при нормальных условиях. При нагревании эти соединения разлагаются на входящий в их состав металл и водород без плавления. Одно исключение - это LiH, который плавится без разложения и при сильном нагревании превращается в Li и H2.
Металлические гидриды - это соединения переходных металлов. Очень часто имеют переменный состав. Их можно представить как твёрдый раствор водорода в металле. Также имеют и кристаллическую структуру металла.
К ковалентным гидридам принадлежит как раз тот вид, что наиболее часто встречается на Земле: соединения водорода с неметаллами. Широкая область распространения этих веществ обусловлена их высокой устойчивостью, так как ковалентные связи являются самыми сильными из химических.
Как пример, формула гидрида кремния: SiH4. Если посмотреть на неё в объёме, то увидим, что водород очень плотно притянут к центральному атому кремния, а его электроны смещены к нему же. Кремний обладает достаточно большой электроотрицательностью, поэтому способен сильнее притягивать электроны к своему ядру, тем самым сокращая длину связи между ним и соседним атомом. А как известно, чем короче связь, тем она прочнее.
В следующем разделе обсудим, чем отличаются гидриды от других соединений в плане химической активности.
Химические свойства
В этом разделе также стоит поделить гидриды на те же группы, что и в прошлом. И начнём мы со свойств ионных гидридов. Их основное отличие от двух других видов в том, что они активно взаимодействуют с водой с образованием щёлочи и выделением водорода в виде газа. Реакция гидрид - вода довольно взрывоопасна, поэтому соединения чаще всего хранят без доступа влаги. Это делается потому, что вода, даже содержащаяся в воздухе, может инициировать опасное превращение.
Покажем уравнение вышеописанной реакции на примере такого вещества, как гидрид калия:
KH + H2O = KOH + H2
Как мы можем видеть, всё достаточно просто. Поэтому рассмотрим более интересные реакции, характерные для двух других видов описываемых нами веществ.
В принципе, остальные превращения, что мы не разобрали, характерны для всех типов веществ. Они склонны взаимодействовать с оксидами металлов, образуя металл, либо с водой, либо с гидроксидом (последнее характерно для щелочных и щёлочно-земельных металлов).
Ещё одна интересная реакция - термическое разложение. Оно происходит при высоких температурах и проходит до образования металла и водорода. Не будем останавливаться на этой реакции, так как уже разбирали её в предыдущих разделах.
Итак, мы рассмотрели свойства этого вида бинарных соединений. Теперь стоит поговорить об их получении.
Получение гидридов
Почти все ковалентные гидриды - это природные соединения. Они достаточно устойчивы, поэтому не распадаются под действием внешних сил. С ионными и металлическими гидридами всё чуть сложнее. Они не существуют в природе, поэтому их приходится синтезировать. Делается это очень просто: реакцией взаимодействия водорода и элемента, гидрид которого требуется получить.
Применение
Некоторые гидриды не имеют конкретного применения, но большинство - очень важные для промышленности вещества. Мы не будем вдаваться в подробности, ведь каждый слышал, что, например, аммиак применяется во многих сферах и служит незаменимым веществом для получения искусственных аминокислот и органических соединений. Применение многих гидридов ограничено особенностями их химических свойств. Поэтому их используют исключительно в лабораторных экспериментах.
Применение - слишком обширный раздел для этого класса веществ, поэтому мы ограничились общими фактами. В следующей части расскажем вам, как многие из нас, не имея должных знаний, путают безобидные (или по крайней мере известные) вещества между собой.
Некоторые заблуждения
Например, некоторые считают, что гидрид водорода - нечто опасное. Если и можно так называть это вещество, то никто так не делает. Если вдуматься, то гидрид водорода - это соединение водорода с водородом, а значит - молекула H2. Конечно, этот газ опасен, но только в смеси с кислородом. В чистом виде он не представляет опасности.
Существует много непонятных названий. Непривычного человека они повергают в ужас. Однако, как показывает практика, большинство из них неопасно и применяется в бытовых целях.
Заключение
Мир химии огромен, и, мы думаем, что если не после этой, то после нескольких других статей вы сами в этом убедитесь. Именно поэтому имеет смысл погружаться в его изучение с головой. Человечество открыло много нового, и ещё больше остаётся неизвестным. И если вам кажется, что в области гидридов нет ничего интересного, вы сильно заблуждаетесь.