Евклидово пространство: понятие, свойства, признаки

Еще в школе все учащиеся знакомятся с понятием «евклидова геометрия», основные положения которой сфокусированы вокруг нескольких аксиом, опирающихся на такие геометрические элементы, как точка, плоскость, прямая, движения. Все они в совокупности формируют то, что уже давно известно под термином «евклидово пространство».

Евклидово пространство

Евклидово пространство, определение которого базируется на положении о скалярном умножении векторов, является частным случаем линейного (аффинного) пространства, которое удовлетворяет целому ряду требований. Во-первых, скалярное произведение векторов абсолютно симметрично, то есть вектор с координатами (x;y) в количественном плане тождественен вектору с координатами (y;x), однако противоположен по направлению.

Во-вторых, в том случае, если производится скалярное произведение вектора с самим собой, то результат этого действия будет носить положительный характер. Единственным исключением станет случай, когда начальная и конечная координата этого вектора равна нулю: в этом случае и произведение его с самим собой то же будет равно нулю.

Евклидово пространство определение

В-третьих, имеет место дистрибутивность скалярного произведения, то есть возможность разложения одной из его координат на сумму двух значений, что не повлечет за собой никаких изменений в итоговом результате скалярного умножения векторов. Наконец, в-четвертых, при умножении векторов на одно и то же действительное число их скалярное произведение также увеличится во столько же раз.

В том случае, если выполняются все эти четыре условия, мы можем с уверенностью сказать, что перед нами евклидово пространство.

Евклидово пространство с практической точки зрения можно охарактеризовать следующими конкретными примерами:

Евклидова геометрия

  1. Самый простой случай – это наличие множества векторов с определенным по основным законам геометрии скалярным произведением.
  2. Евклидово пространство получится и в том случае, если под векторами мы будем понимать некое конечное множество действительных чисел с заданной формулой, описывающей их скалярную сумму или произведение.
  3. Частным случаем евклидова пространства следует признать так называемое нулевое пространство, которое получается в том случае, если скалярная длина обоих векторов равна нулю.

Евклидово пространство обладает целым рядом специфических свойств. Во-первых, скалярный множитель можно выносить за скобки как от первого, так и от второго сомножителя скалярного произведения, результат от этого не претерпит никаких изменений. Во-вторых, наряду с дистрибутивностью первого элемента скалярного произведения, действует и дистрибутивность второго элемента. Кроме того, помимо скалярной суммы векторов, дистрибутивность имеет место и в случае вычитания векторов. Наконец, в-третьих, при скалярном умножении вектора на нуль, результат также будет равен нулю.

Таким образом, евклидово пространство – это важнейшее геометрическое понятие, используемое при решении задач с взаимным расположением векторов друг относительно друга, для характеристики которого используется такое понятие, как скалярное произведение.

Статья закончилась. Вопросы остались?
Комментарии 0
Подписаться
Я хочу получать
Правила публикации
Редактирование комментария возможно в течении пяти минут после его создания, либо до момента появления ответа на данный комментарий.