RISC-архитектура — компьютер с уменьшенным набором инструкций. Является типом микропроцессорной архитектуры, которая использует небольшой оптимизированный набор инструкций в отличие от предшестувующих типов архитектур с расширенным набором алгоритмических данных. Термин RISC был придуман Дэвидом Паттерсоном из проекта Berkeley RISC.
Определение
Компьютер с ограниченным набором команд - это устройство, чья архитектура набора инструкций (ISA) имеет набор атрибутов, который позволяет ему иметь более низкие циклы на инструкцию (CPI), чем сложная команда, установленная на компьютер (CISC). Общая концепция RISC — это концепция компьютера, который содержит небольшой набор простых и общих алгоритмов, но не расширенный набор сложных и специализированных последовательностей. Другим распространенным признаком RISC является архитектура загрузки/хранения, где доступ к памяти осуществляется только с помощью определенных инструкций.
История и развитие
Первые проекты RISC пришли из IBM, Stanford и UC-Berkeley в 70-х и 80-х гг. ХХ века. IBM 801, Stanford MIPS и Berkeley RISC I и II были разработаны с аналогичной философией, которая стала известна как RISC. Некоторые особенности дизайна были характерны для большинства RISC-процессоров:
- Время выполнения одного цикла: процессоры имеют CPI — время на выполнение инструкции одного цикла. Это связано с оптимизацией каждой команды на CPU.
- Конвейерная обработка: технический алгоритм, который позволяет одновременное выполнение частей или этапов инструкций для более эффективного обработки инструкций.
- Большой перечень регистров: философия дизайна RISC обычно включает большее количество регистров для предотвращения чрезмерного количества взаимодействий с памятью.
Хотя ряд компьютеров 1960-х и 70-х годов являлись предшествующими моделями RISC, современная концепция относится к 1980-м годам. В частности, два проекта в Стэнфорде и Калифорнийском университете масштабируют эту концептуальную идею. Стэнфордский MIPS станет коммерчески успешной моделью, в то время как университет в Беркли дал название всей концепции, коммерциализированной как SPARC. Другим успехом этой эпохи были усилия IBM, которые в конечном итоге привели к Power Architecture. По мере развития этих направлений в конце 1980-х гг., и особенно в начале 1990-х гг., процветало множество подобных проектов, представляющих собой основную силу на рынке рабочих станций Unix, а также встроенные процессоры в лазерных принтерах, маршрутизаторах и аналогичных продуктах.
Плюсы и минусы архитектуры RISC
Простейший способ изучить преимущества и уязвимости архитектуры RISC - это сопоставить ее с предшествующей архитектурой CISC. Основная цель архитектуры CISC — завершить задачу за меньшее количество линий сборки. Это достигается за счет создания процессорного оборудования, способного понимать и выполнять ряд операций. Для этой конкретной задачи процессор CISC выпускается с конкретной инструкцией (MULT). При выполнении эта команда загружает два значения в отдельные регистры, умножает операнды в исполнительном модуле и затем сохраняет продукт в соответствующем регистре. Таким образом, вся задача умножения двух чисел может быть завершена одной инструкцией: MULT 2: 3, 5: 2. CISC и RISC-архитектура — предшествующее и последующее архитектурное решение.
MULT - это то, что известно как «сложная инструкция». Команда работает непосредственно в банках памяти компьютера и не требует, чтобы программист явно вызывал любые функции загрузки или сохранения. Она очень похожа на команду на языке более высокого уровня. Например, если мы допустим, что a представляет значение 2:3, а b представляет значение 5:2, то эта команда идентична выражению C a = a * b.
Одно из основных преимуществ этой системы заключается в том, что компилятор должен выполнить минимум работы, чтобы перевести формулировку языка высокого уровня в сборку. Поскольку длина кода относительно короткая, для хранения инструкций требуется очень небольшое ОЗУ. При сравнительном анализе CISC и RISC-архитектуры процессоров акцент ставится на реализации сложных инструкций непосредственно в аппаратном обеспечении.
Подход RISC
Процессоры RISC используют только элементарные инструкции, которые выполняются за один такт. Таким образом, описанная выше команда MULT может быть разделена на три отдельные команды: LOAD, которая перемещает данные из банка памяти в регистр PROD, который находит произведение двух операндов, расположенных внутри регистров, и STORE, который перемещает данные из регистра в банки памяти. Чтобы выполнить точный ряд шагов, описанных в подходе CISC, программисту необходимо будет закодировать четыре строки сборки:
LOAD A, 2:3.
LOAD B, 5:2.
PROD A, B.
STORE 2:3, А.
Изначально это может показаться гораздо менее эффективным способом завершения операции, поскольку существует больше строк кода и для хранения инструкций уровня сборки требуется больше ОЗУ. Компилятор также должен выполнить больше работы, чтобы преобразовать формулировку языка высокого уровня в код этой формы.
Сравнение CISC и RISC
Ниже представлены сравнительные данные CISC и RISC-архитектуры:
CISC:
- Акцент на аппаратном обеспечении.
- Включает многочасовые сложные инструкции.
- Небольшие размеры кода, высокие циклы в секунду.
- Транзисторы, используемые для хранения сложных инструкций.
RISC:
- Акцент на программном обеспечении.
- Сокращенная инструкция, не требующая большого количества времени.
- Низкие циклы в секунду, большие размеры кода.
- Тратит больше транзисторов на регистрах памяти.
Стратегия RISC вносит некоторые очень важные преимущества. Поскольку каждая команда требует выполнения только одного такта, вся программа будет выполняться примерно в такое же количество времени, что и многоцилиндровая команда MULT. Эти «сокращенные инструкции» RISC требуют меньше транзисторов аппаратного пространства, чем сложные инструкции, оставляя больше места для общих регистров. Поскольку все инструкции выполняются в единое время (например, один такт), возможна конвейерная обработка.
Характеристика процесса
Разделение инструкций LOAD и STORE фактически уменьшает объем работы, которую должен выполнить компьютер. После выполнения команды MULT в стиле CISC процессор автоматически стирает регистры. Если один из операндов необходимо использовать для другого вычисления, процессор должен перезагрузить данные из банка памяти в регистр. В RISC операнд останется в регистре, пока на нем не будет загружено другое значение.
Подход CISC пытается минимизировать количество инструкций для каждой программы, жертвуя количеством циклов на инструкцию. RISC же, наоборот, уменьшает количество циклов за счет инструкций для каждой программы.
Сложности коммерцеской реализации
Несмотря на преимущества обработки на основе RISC, прошли десятилетия прежде, чем чипы RISK были коммерчески востребованы. Во многом это было связано с отсутствием поддержки программного обеспечения.
Хотя линейка Power Macintosh от Apple, в которой использовались чипы на основе RISC и Windows NT, совместима с RISC, Windows 3.1 и Windows 95 были разработаны с учетом процессоров CISC. Многие компании не желали рисковать появляющейся технологией RISC. Без коммерческого интереса разработчики процессоров не смогли изготовить чипы RISC в достаточно больших объемах, чтобы сделать их цену конкурентоспособной.
Еще одним серьезным препятствием стало присутствие Intel. Несмотря на то, что их чипы CISC стали все более громоздкими и сложными в разработке, Intel обладала ресурсами для разработки мощных процессоров. Хотя чипы RISC могли превзойти усилия Intel в определенных областях, различия не были достаточно велики, чтобы убедить покупателей менять технологии.
Общее преимущество RISC
Сегодня Intel x86 является единственным чипом, который сохраняет архитектуру CISC. Это связано прежде всего с продвижением в других областях компьютерной техники. Цена ОЗУ резко снизилась. В 1977 году 1 МБ DRAM стоил около 5000 долларов. К 1994 году такой же объем памяти стоит всего 6 долларов США (с учетом инфляции). Технология компилятора также стала более сложной, так что использование RISC RAM и акцент на программное обеспечение стали идеальными.
Философия набора инструкций
Ошибочным пониманием определения RISK является идея того, что процедуры устраняются, что приводит к сокращенному набору алгоритмов. На протяжении многих лет процедуры RISC увеличивались, и в настоящее время многие из них имеют более широкий набор функций, чем CPU CISC.
Под термином «уменьшенный набор процедур» подразумевается описание того факта, что объем работы, выполняемый каждой инструкцией, сокращается (не более одного цикла памяти) сравнительно с усложненными процедурами CISC, которые требуют десятки циклов для выполнения одной команды. RISC-архитектура обычно имеет отдельные алгоритмы ввода-вывода и работы с данными.
Формат инструкции
Большинство архитектур RISC имеют инструкции с фиксированной длиной (обычно 32 бита) и простое кодирование, что значительно упрощает выборку, декодирование и выдачу логики. Одним из недостатков 32-разрядных инструкций является снижение плотности кода, что является неблагоприятным фактором для встроенных вычислений на рабочих станциях и серверах. Архитектуры RISC изначально были предназначены для обслуживания. Для решения этой проблемы несколько архитектур, таких как ARM, Power ISA, MIPS, RISC-V и Adipteva Epiphany, имеют необязательный короткий сокращенный формат инструкции или функцию сжатия команд. SH5 также следует этой схеме, хотя и развился в обратном направлении, добавив более длинные мультимедийные инструкции к оригинальной 16-битной кодировке.
Использование оборудования
Для любого заданного уровня общей производительности микросхема RISC, как правило, имеет гораздо меньше транзисторов, предназначенных для основной логики, которая первоначально позволяла дизайнерам увеличивать размер регистров и внутренний параллелизм.
Другие функции, которые обычно встречаются в архитектурах RISC:
- Средняя производительность процессора приближается к одной инструкции за цикл.
- Единый формат инструкции — используется одно слово с кодом операции в одних и тех же позициях для более простого декодирования.
- Все регистры общего назначения могут использоваться в качестве источника/назначения во всех инструкциях, упрощая разработку компилятора (регистры с плавающей запятой часто сохраняются отдельно).
- Простые режимы со сложной адресацией, выполняемые последовательностями команд.
- Несколько типов данных в аппаратном обеспечении (например, байтовая строка или BCD).
В RISC-конструкциях также представлена модель памяти Гарварда, где команды и данные концептуально разделены. Это означает, что изменение памяти, в которой хранится код, может не повлиять на инструкции, выполняемые процессором (поскольку ЦП имеет отдельный кэш команд и данных), до тех пор, пока не будет выдана специальная инструкция синхронизации. С другой стороны, это позволяет одновременно обращаться к кэшам, что часто повышает производительность.
Особенности RISC-архитектуры
На начальном этапе развития компьютерной индустрии программирование проводилось на языке ассемблера или машинного кода, что поощряло использование мощных и простых в использовании инструкций. Поэтому разработчики ЦП пытались проектировать алгоритмы, способные выполнять как можно большую работу. С появлением языков более высокого уровня архитекторы начали создавать специальные инструкции для непосредственного внедрения определенных центральных механизмов. Вторая общая цель заключалась в том, чтобы обеспечить все возможные режимы адресации для каждого алгоритма, известного как ортогональность, для облегчения реализации компилятора.
Отношение к тому времени заключалось в том, что дизайн аппаратного обеспечения был более зрелым, чем дизайн компилятора, поэтому сам по себе также является причиной внедрения частей функциональности в аппаратном или микрокоде, а не только в ограниченном памятью компиляторе (или в его сгенерированном коде). После появления RISC этот подход стал известен как сложные вычисления набора команд, или CISC.
У процессоров также было относительно мало регистров по нескольким причинам:
- Большое количество регистров подразумевает более длительное сохранение и восстановление содержимого в стеке машины и требует большого количества битов команд в качестве спецификаторов, что означает менее плотный код.
- Регистры CPU стоят дороже, чем внешние ячейки памяти.
- Ограниченность печатных плат или интегрированных микросхем.
Практическое применение
RISC-архитектура процессора теперь используются на большом спектре платформ: от смартфонов и планшетных ПК до некоторых из самых высокопродуктивных суперкомпьютеров, таких как компьютер K (лидер списка топ-500 в 2011 г.).
К началу XXI века большинство низкопрофильных и мобильных систем основывались на архитектуре RISC. Примеры:
- Архитектура ARM доминирует на рынке для маломощных и недорогих встроенных систем (200-1800 МГц в 2014 году). Она применяется в ряде большинства Android-систем, Apple iPhone и iPad, Microsoft Windows Phone (бывшая Windows Mobile), устройства RIM (topic.risc.архитектура), Nintendo Game Boy Advance, DS/3DS и Switch.
- Линия MIPS (в какой-то момент используется во многих компьютерах SGI ), а теперь - в PlayStation, PlayStation 2, Nintendo 64 (ipb.risc.архитектура), игровых консолях PlayStation Portable и шлюзах для жилых помещений, таких как Linksys WRT54G .
- Hitachi SuperH, использующийся в Sega Super 32X, Saturn и Dreamcast (viewtopic.php.risc.архитектура), теперь разработан и продан Renesas как SH4.
- Atmel AVR используется в разных продуктовых линейках: от портативных контроллеров Xbox до автомобилей BMW .
- RISC-V (vbulletin.risc.архитектура), пятый Berkeley RISC ISA с открытым исходным кодом, с 32-разрядным адресным пространством, небольшим ядром целочисленного набора команд, экспериментальной «сжатой» ISA для плотности кода и предназначенной для стандартных и специальных расширений.
- Рабочие станции, серверы и суперкомпьютеры.
- MIPS (powered.by.smf.risc.архитектура), Silicon Graphics (в 2006 году прекратила создание систем на основе MIPS).
- SPARC, Oracle (ранее Sun Microsystems ) и Fujitsu (phorum.risc.архитектура).
- Архитектура IBM Power Architecture, применяемая в большинстве суперкомпьютеров IBM, серверах усредненного уровня и терминальных станциях.
- PA-RISC Hewlett-Packard (phpbb.risc.архитектура), также именуемый как HP-PA (прекращен в конце 2008 года).
- Alpha, используется в одноплатных компьютерах, рабочих станциях, серверах и суперкомпьютерах от Digital Equipment Corporation, Compaq и HP (прекращено с 2007 года).
- RISC-V (powered.by.phpbb.risc.архитектура), пятый Berkeley RISC ISA, с открытым исходным кодом, с 64 или 128-битными адресными пространствами и целым ядром, расширенным с плавающей точкой, атомизацией и векторной обработкой, и разработанный для расширения с инструкциями для сетей, ввода-вывода, обработки данных. 64-битный суперскалярный дизайн Rocket доступен для скачивания.
Сравнение с другими архитектурами
Некоторые процессоры были специально разработаны с очень небольшим набором инструкций, но эти конструкции значительно отличаются от традиционных RISC-архитектур, поэтому им были предоставлены другие данные, такие как минимальный набор команд (MISC) или транспортная инициированная архитектура (TTA).
Архитектуры RISC традиционно имели мало успехов на рынке настольных ПК и товарных серверов, где платформы на базе x86 остаются доминирующей архитектурой процессора. Однако это может измениться, поскольку процессоры на базе архитектуры ARM разрабатываются для систем с более высокой производительностью. Производители, включая Cavium, AMD и Qualcomm, выпустили серверные процессоры на базе архитектуры ARM. ARM также сотрудничала с Cray в 2017 году, чтобы создать суперкомпьютер на базе архитектуры ARM. Компания-лидер компьютерной индустрии Microsoft объявила, что в рамках партнерства с Qualcomm в 2017 году планируется поддержка ПК-версии Windows 10 на устройствах на базе Qualcomm Snapdragon. Эти устройства будут поддерживать программное обеспечение Win32 на базе x86 с помощью эмулятора процессора x86.
Тем не менее помимо настольной арены архитектура ARM RISC широко используется в смартфонах, планшетах и многих формах встроенного устройства. Также Intel Pentium Pro (P6) использует внутреннее RISC-процессорное ядро для своих процессоров.
В то время как начальные разработки RISC-архитектуры процессора значительно отличались от инновационных проектов CISC, к 2000 году самые высокопроизводительные процессоры в линейке RISC почти не отличаются от самых высокопроизводительных процессоров в линии CISC.