Уравнение состояния идеального газа и смысл абсолютной температуры

Каждый человек в течение своей жизни сталкивается с телами, которые находятся в одном из трех агрегатных состояний вещества. Самым простым для изучения агрегатным состоянием является газ. В статье рассмотрим концепцию идеального газа, приведем уравнение состояния системы, а также уделим некоторое внимание описанию абсолютной температуры.

Газовое состояние вещества

Каждый школьник хорошо представляет, о каком состоянии материи идет речь, когда слышит слово "газ". Под этим словом понимают тело, которое способно занимать любой предоставленный ему объем. Оно не способно сохранять форму, поскольку не может сопротивляться даже самому незначительному внешнему воздействию. Также газ не сохраняет и объем, что его отличает не только от твердых тел, но и от жидкостей.

Как и жидкость, газ является текучей субстанцией. В процессе движения твердых тел в газах последние препятствуют этому движению. Появившуюся силу называют сопротивлением. Ее величина зависит от скорости движения тела в газе.

Яркими примерами газов является воздух, природный газ, который используется для отопления домов и приготовления пищи, инертные газы (Ne, Ar), которыми заполняют рекламные трубки тлеющего разряда, или которые используют для создания инертной (неагрессивной, защитной) среды при сварке.

Идеальный газ

Термодинамические газовые процессы

Прежде чем переходить к описанию газовых законов и уравнения состояния, следует хорошо разобраться с вопросом, что собой представляет идеальный газ. Это понятие вводится в молекулярно-кинетической теории (МКТ). Идеальным называется любой газ, который удовлетворяет следующим характеристикам:

  • Образующие его частицы не взаимодействуют друг с другом за исключением непосредственных механических столкновений.
  • В результате столкновения частиц со стенками сосуда или между собой их кинетическая энергия и количество движения сохраняются, то есть столкновение считается абсолютно упругим.
  • Частицы не имеют размеров, но обладают конечной массой, то есть подобны материальным точкам.

Естественно, что любой газ является не идеальным, а реальным. Тем не менее, для решения многих практических задач указанные приближения являются вполне справедливыми и ими можно пользоваться. Существует общее эмпирическое правило, которое гласит: независимо от химической природы, если газ имеет температуру выше комнатной и давление порядка атмосферного или ниже, то его с высокой точностью можно считать идеальным и применять для его описания формулу уравнения состояния идеального газа.

Закон Клапейрона-Менделеева

Уравнение состояния идеального газа

Переходами между различными агрегатными состояниями вещества и процессами в рамках одного агрегатного состояния занимается термодинамика. Давление, температура и объем являются тремя величинами, которые однозначно определяют любое состояние термодинамической системы. Формула уравнения состояния идеального газа объединяет в единое равенство все три указанные величины. Запишем эту формулу:

P*V = n*R*T

Здесь P, V, T - давление, объем, температура, соответственно. Величина n - это количество вещества в молях, а символом R обозначена универсальная постоянная газов. Это равенство показывает, что чем больше произведение давления на объем, тем больше должно быть произведение количества вещества на температуру.

Эмиль Клапейрон

Формула уравнения состояния газа называется законом Клапейрона-Менделеева. В 1834 году французский ученый Эмиль Клапейрон, обобщив экспериментальные результаты его предшественников, пришел к этому уравнению. Однако Клапейрон пользовался рядом констант, которые Менделеев впоследствии заменил одной - универсальной газовой постоянной R (8,314 Дж/(моль*К)). Поэтому в современной физике это уравнение названо по фамилиям французского и русского ученых.

Дмитрий Иванович Менделеев

Другие формы записи уравнения

Выше мы записали уравнение состояния идеального газа Менделеева-Клапейрона в общепринятом и удобном виде. Однако в задачах по термодинамике часто может потребоваться несколько иной вид. Ниже записаны еще три формулы, которые непосредственно следуют из записанного уравнения:

P*V = N*kB*T;

P*V = m/M*R*T;

P = ρ*R*T/M.

Эти три уравнения также являются универсальными для идеального газа, только в них появляются такие величины, как масса m, молярная масса M, плотность ρ и число частиц N, которые составляет систему. Символом kB здесь обозначена постоянная Больцмана (1,38*10-23 Дж/К).

Закон Бойля-Мариотта

Когда Клапейрон составлял свое уравнение, то он основывался на газовых законах, которые были открыты экспериментально несколько десятилетий ранее. Одним из них является закон Бойля-Мариотта. Он отражает изотермический процесс в закрытой системе, в результате которого изменяются такие макроскопические параметры, как давление и объем. Если положить T и n постоянными в уравнении состояния идеального газа, газовый закон тогда примет вид:

P1*V1 = P2*V2

Это и есть закон Бойля-Мариотта, который говорит о том, что произведение давление на объем сохраняется во время произвольного изотермического процесса. При этом сами величины P и V изменяются.

Если изображать график зависимости P(V) или V(P), то изотермы будут представлять собой гиперболы.

Закон Бойля-Мариотта

Законы Шарля и Гей-Люссака

Эти законы математически описывают изобарный и изохорный процессы, то есть такие переходы между состояниями газовой системы, при которых сохраняются давление и объем, соответственно. Закон Шарля математически можно записать следующим образом:

V/T = const при n, P = const.

Закон Гей-Люссака записывается так:

P/T = const при n, V = const.

Если оба равенства представить в виде графика, то мы получим прямые линии, которые под некоторым углом наклонены к оси абсцисс. Такой вид графиков говорит о прямой пропорциональности между объемом и температурой при постоянном давлении и между давлением и температурой при постоянном объеме.

Закон Шарля

Отметим, что все три рассмотренных газовых закона не принимают во внимание химический состав газа, а также изменение его количества вещества.

Абсолютная температура

В быту мы привыкли пользоваться температурной шкалой Цельсия, поскольку она является удобной для описания окружающих нас процессов. Так, вода кипит при температуре 100 oC, а замерзает при 0 oC. В физике эта шкала оказывается неудобной, поэтому применяют так называемую абсолютную шкалу температур, которая была введена лордом Кельвином в середине XIX века. В соответствии с этой шкалой температура измеряется в Кельвинах (К).

Считается, что при температуре -273,15 oC не существует никаких тепловых колебаний атомов и молекул, прекращается полностью их поступательное движение. Этой температуре в градусах Цельсия соответствует абсолютный ноль в Кельвинах (0 К). Из этого определения следует физический смысл абсолютной температуры: она является мерой кинетической энергии составляющих материю частиц, например, атомов или молекул.

Помимо приведенного выше физического смысла абсолютной температуры, существуют другие подходы к пониманию этой величины. Одним из них является упомянутый газовый закон Шарля. Запишем его в следующей форме:

V1/T1 = V2/T2 =>

V1/V2 = T1/T2.

Последнее равенство говорит о том, что при определенном количестве вещества в системе (например, 1 моль) и определенном давлении (например, 1 Па) объем газа однозначно определяет абсолютную температуру. Иными словами, возрастание объема газа при указанных условиях возможно только за счет увеличения температуры, а уменьшение объема свидетельствует об уменьшении величины T.

Напомним, что в отличие от температуры по шкале Цельсия, абсолютная температура не может принимать отрицательные значения.

Принцип Авогадро и газовые смеси

Помимо изложенных выше газовых законов, уравнение состояния для идеального газа также приводит к открытому Амедео Авогадро в начале XIX века принципу, который носит его фамилию. Этот принцип устанавливает, что объем любого газа при постоянных давлении и температуре определяется количеством вещества в системе. Соответствующая формула выглядит так:

n/V = const при P, T = const.

Записанное выражение приводит к известному в физике идеальных газов закону Дальтона для газовых смесей. Этот закон гласит, что парциальное давление газа в смеси однозначно определяется его атомной долей.

Смесь газов

Пример решения задачи

В закрытом сосуде с жесткими стенками, содержащем идеальный газ, в результате нагревания давление увеличилось в 3 раза. Необходимо определить конечную температуру системы, если ее начальное значение было равно 25 oC.

Сначала переведем температуру из градусов Цельсия в Кельвины, имеем:

T = 25 + 273,15 = 298,15 К.

Поскольку стенки сосуда являются жесткими, то процесс нагревания можно считать изохорным. Для этого случая применим закон Гей-Люссака, имеем:

P1/T1 = P2/T2 =>

T2 = P2/P1*T1.

Таким образом, конечная температура определяется из произведения отношения давлений и начальной температуры. Подставляя в равенство данные, получаем ответ: T2 = 894,45 К. Эта температура соответствует 621,3 oC.

Статья закончилась. Вопросы остались?
Комментарии 0
Подписаться
Я хочу получать
Правила публикации
Редактирование комментария возможно в течении пяти минут после его создания, либо до момента появления ответа на данный комментарий.
Новости и общество
Новости и общество
Новости и общество