Операции наращения и дисконтирования. Финансовые операции в рыночной экономике

Под процентными средствами следует понимать абсолютный размер прибыли, полученной в результате предоставления денег. Они могут передаваться в любой форме. Это могут быть различные финансовые сделки. К примеру, осуществляется выдача ссуды, помещение средств на депозитный счет, продажа изделий в кредит, приобретение сберегательного сертификата, облигации, учет векселя и так далее. Особое значение при этом имеет связь между ставкой наращения и ставкой дисконтирования. Рассмотрим эти элементы подробнее.

операции наращения и дисконтирования

Специфика

Процентная ставка представляет собой относительную сумму прибыли, полученной за определенный (фиксированный) временной отрезок. Она формируется отношением дохода к размеру задолженности. Измерение ее осуществляется в обыкновенной либо десятичной дроби или же в процентах. Проводя анализ финансовых операций, специалисты используют эту относительную сумму как показатель степени эффективности (доходности) любой коммерческо-хозяйственной, инвестиционной, кредитной деятельности. При этом не будет иметь значения, был ли факт инвестирования средств и процесс увеличения их объема, или он не состоялся. Временной промежуток, к которому приурочена ставка процента, именуется периодом начисления. Им может являться год, квартал, полугодие, месяц и даже день в некоторых случаях. Как правило, на практике используются годовые суммы.

Логика операций дисконтирования (наращения) капитала

По договоренности между заемщиком и кредитором, выплата процентов осуществляется по мере их начисления, либо они включаются в основную сумму задолженности. Увеличение объема средств во времени вследствие присоединения - это наращение капитала. Его именуют еще ростом суммы. Ставка дисконтирования - величина, обратная ставке наращения. Это обусловливается тем, что при сокращении сумма, которая относится к предстоящему периоду, уменьшается на показатель соответствующей скидки. В таких случаях говорят, что применяются учетные (дисконтированные) ставки. Проценты, полученные по ним, именуют антисипативными, а те, которые возникли по сумме увеличения, называют декурсивными. Такова логика операций дисконтирования (наращения) капитала.

анализ финансовых операций

Особенности начисления

В большинстве случаев декурсивные проценты именуют просто процентами. Для их начисления используется постоянная база. Когда в качестве нее принимается сумма, которая была получена на предыдущем этапе сокращения либо увеличения, применяются сложные проценты. Наращение и дисконтирование в таких случаях проходит по определенным схемам. Относительные суммы могут являться фиксированными. В этом случае в договоре определяются их размеры. Также они могут быть и плавающими. В этом случае в договоре указывается не ставка, а база, изменяющаяся во временном промежутке, а также сумма надбавки - маржи. Размер последней определяется сроком кредита, платежеспособностью заемщика и прочими условиями. В течение всего периода ссудной операции она может являться переменной либо постоянной. В случае последовательного погашения долга допускается два варианта начисления процентов. В первом случае ставка процента (сложная либо простая) применяется к фактически существующей сумме задолженности. Второй вариант используется при потребительском кредитовании. В этом случае начисление осуществляется на всю сумму обязательства без учета его последовательного погашения. На практике используются дискретные суммы. Они начисляются за определенные временные промежутки (полугодие, год и пр.). Операции наращения и дисконтирования могут проводиться непрерывно, в течение бесконечно малых периодов. В этом случае применяют и соответствующие проценты (непрерывные).

Формулы наращения и дисконтирования

Под увеличенной суммой долга (ссуды, депозита, прочих займов или инвестированных средств) следует понимать первоначальный объем денег с процентами к концу периода начисления. Таким образом, можно обозначить:

  • проценты за весь срок - I;
  • первоначальная сумма задолженности - Р;
  • увеличенный объем средств (в конце периода) - S;
  • процентная ставка - i;
  • время ссуды - n.

За весь период проценты будут составлять:

I = Pni.

Наращение суммы определяется сложением первоначальных средств и процентов:

P + I = P + Pni = P (1+ ni) = S.

сложные проценты наращение и дисконтирование

На практике специалистам часто приходится сталкиваться с противоположной задачей. По сумме S, которая подлежит уплате через какой-то временной промежуток n, нужно определить размер ссуды, которая была получена - Р. В таких случаях имеет место дисконтирование. Расчет осуществляется тогда, когда проценты с суммы S будут удерживаться вперед, непосредственно при выдаче займа. Процесс начисления процентов и их списание именуют учетом. Сами же проценты называют дисконтом либо скидкой. Для вычисления нужно воспользоваться равенством S = P (1 + ni). Получится Р = S / (1 + ni). Таким образом, Р будет являться современным размером S, выплаченным спустя n лет. Приведенные вычисления показывают простые виды дисконтирования (наращения). В последнем случае рассмотрен вариант математического определения суммы. Как видно, при вычислениях используются показатели, которые применяются и в операции наращения, и дисконтирования.

Длительность периода

Операции наращения и дисконтирования могут вычисляться по двум временным базам. Если К будет 360 дней, то получаются коммерческие или обыкновенные проценты. При применении реальной продолжительности календарного года в 365 или 366 дней начисляют точные проценты. Количество дней ссуды берется точно и приближенно. В последнем случае в месяце будет 30 дней. Точное количество дней можно определить посредством вычисления их числа между датами, когда был выдан заем, и когда он должен быть погашен. По ст. 839, п. 1 ГК, дни, в которые был открыт и закрыт вклад, не включаются в общий срок для начисления.

Используемые варианты

На практике применяются три способа начисления процентов:

  1. Точные суммы с конкретным количеством дней. При этом используются обозначения АСТ/АСТ либо 365/365. Такой вариант используется центральными и крупными коммерческими банковскими институтами в США и Великобритании. Этот способ вычисления позволяет получить самые точные суммы.
  2. Обычные проценты с точным количеством дней займа. В этом случае используются обозначения АСТ/360 или 365/360. Данный метод иногда именуют банковским. Его применяют при операциях между банками разных стран или одного государства. Такой метод, в частности, распространен в Швейцарии, Бельгии, Франции. При данном вычислении получается несколько большая сумма, чем при применении точных процентов.
  3. Обычные проценты с примерным количеством дней (360/360). Этот метод практикуется в коммерческих банках Дании, Германии, Швеции. Такой вариант используется в случаях, когда точный результат не нужен (к примеру, при промежуточных вычислениях).
    формулы наращения и дисконтирования

В процессе инвестирования средств в краткосрочный депозит в некоторых случаях применяют неоднократное последовательное повторение наращения по простому проценту в рамках общего заданного периода. Таким образом выполняется реинвестирование сумм, полученных на каждой стадии увеличения объема средств при помощи переменной или постоянной базы.

Сокращение

Дисконтирование может рассматриваться в качестве определения любого стоимостного показателя, относящегося к предстоящему времени, на более ранний период. Такой метод именуется приведением величины к некоторому, как правило начальному, моменту. Сумму Р, полученную при помощи сокращения, называют текущей стоимостью либо современным размером будущего платежа. В зависимости от используемого вида ставки процента используется два варианта дисконтирования:

  1. Математический метод.
  2. Коммерческий (банковский) учет.

В первом варианте, рассмотренном выше, полученная дробь именуется дисконтирующим множителем. Он отражает долю, которую составляет первоначальный размер задолженности в конечной сумме. При использовании метода коммерческого учета финансовый институт до наступления срока выплаты по векселю либо другому платежному обязательству покупает его у владельца по стоимости, меньшей, чем указана в бумаге. Таким образом, приобретение осуществляется с учетом скидки. При наступлении срока платежа банк, получив деньги, реализует процентную прибыль в форме дисконта. Владелец бумаги с помощью учета обладает возможностью получить средства раньше указанного в ней срока.

Особенности векселя

Эта ценная бумага представлена в виде долговой расписки. Вексель оформляется в соответствии с законодательными требованиями. Нормы предусматривают специальные бланки, в которых присутствуют наименование, срок платежа, место, где он должен быть произведен, сведения о субъекте, которому предназначается оплата, информация о дате и месте составления бумаги, подпись векселедателя. Такие долговые расписки могут быть переводными и простыми. Последние представлены в виде документов, которые удостоверяют безусловное финансовое обязательство векселедателя выплатить определенную сумму владельцу бумаги по наступлению срока погашения обязательства. Переводным называют документ, который выписывает заемщик. Тратта - это форма особого приказа непосредственному плательщику (банковской организации, как правило) о выплате в установленный срок векселедержателю (третьему лицу) определенной суммы.

логика операций дисконтирования наращения капитала

Учет векселя

Для таких ценных бумаг используется коммерческий (банковский) метод. В соответствии с ним проценты за использование ссуды в форме дисконта будут начисляться на сумму, которая должна быть выплачена в конце периода. Учетным показателем в этом случае выступает d. Размер суммы будет равен Snd. N будет измеряться в годах, если d - годовая ставка. Вычисления будут следующими:

Р = S - Snd = S (1 - nd),

где n - период с момента учета до дня погашения обязательства;

(1 - nd) - дисконтный множитель.

Учет, как правило, выполняется при временной базе К, равной 360 дням, количество дней займа чаще всего берется точное.

Другие варианты

Операции наращения и дисконтирования вычисляются не только по простым процентам. К примеру, суммы не выплачиваются сразу после начисления, а включаются в сумму задолженности. Такое присоединение именуют капитализацией процентов. При вычислении можно применить те же показатели, что использовались выше.

По окончании первого года проценты равны Pi. Наращенная сумма при этом будет Р + Pi = Р (1 + i). К завершению второго года она станет Р (1 + i) + Р (1 + i) i = Р (1 + i) 2 и так далее. По окончании года n сумма будет S = Р (1 + i) n, а проценты за этот период I = S - P = Р [(1 + i) n - 1].

(1 + i) n - множитель наращения по сложным процентам. Время в таких случаях измеряют как АСТ/АСТ. Зачастую срок для начисления процентов не целое число.

Начисление процентов при увеличении средств

Существуют следующие варианты начисления при наращении:

  1. Вычисление осуществляется с использованием целого числа лет. Оно берется из формулы сложных процентов. Из соотношения простых процентов берут дробную часть периода.
  2. По правилам некоторых коммерческих банков для ряда операций процентная сумма начисляется только за целые числа периодов (лет или иных сроков).
    связь между ставкой наращения и ставкой дисконтирования

Для сопоставления результатов увеличения по различным процентным показателям достаточно будет провести сравнение соответствующих множителей. При равных уровнях ставок процентов соотношения этих показателей будут существенно зависеть от периода. При n>1 с удлинением срока различие будет увеличиваться. Работая со сложными процентами, используют правило 72: если процентная ставка есть i, то удвоение суммы происходит приблизительно за 72/i лет. К примеру, при 12 % это случится спустя 6 лет.

Номинальный и эффективный показатель

В условиях современности капитализация процентов осуществляется, как правило, не единожды, а несколько раз в течение года. Это может осуществляться поквартально либо по полугодиям. В некоторых зарубежных коммерческих банковских структурах практикуется и ежедневное начисление. Если взять за годовую ставку j, количество периодов в году - m, каждый раз определение процентов будет осуществляться по j/m. Ставка j именуется номинальной. Существует также действительный (эффективный) показатель. Он представляет собой годовую ставку сложных процентов. С ее использованием получают тот же результат, что и при применении m - единовременное начисление процентов по j/m. Эта ставка измеряет тот относительный реальный доход, который получается в целом за год.

ставка дисконтирования величина обратная ставке наращения

Банковский учет

При вычислении по коммерческому методу используется сложная ставка. В таких случаях процесс сокращения суммы проходит с определенным замедлением. Это обусловливается тем, что каждый раз учетную ставку применяют не к первоначальному объему средств. Она используется для суммы, дисконтированной на предыдущем этапе во временном промежутке. Эффективный учетный показатель характеризует степень сокращения за год. Эта ставка во всех случаях при m>1 будет меньше, чем номинальная.

Статья закончилась. Вопросы остались?
Комментарии 0
Подписаться
Я хочу получать
Правила публикации
Редактирование комментария возможно в течении пяти минут после его создания, либо до момента появления ответа на данный комментарий.