Что такое альфа-распад и бета-распад? Бета-распад, альфа-распад: формулы и реакции

Альфа и бета-излучения в общем случае называются радиоактивными распадами. Это процесс, представляющий собой испускание субатомных частиц из ядра, происходящий с огромной скоростью. В результате атом или его изотоп может превратиться из одного химического элемента в другой. Альфа и бета-распады ядер характерны для нестабильных элементов. К ним относятся все атомы с зарядовым числом больше 83 и массовым числом, превышающим 209.

Условия возникновения реакции

Распад, подобно другим радиоактивным превращениям, бывает естественным и искусственным. Последний происходит из-за попадания в ядро какой-либо посторонней частицы. Сколько альфа и бета-распада способен претерпеть атом - зависит лишь от того, как скоро будет достигнуто стабильное состояние.

При естественных обстоятельствах встречается альфа и бета-минус распады.

При искусственных условиях присутствует нейтронный, позитронный, протонный и другие, более редкие разновидности распадов и превращений ядер.

Данные названия дал Эрнест Резерфорд, занимавшийся изучением радиоактивного излучения.

Различие между стабильным и нестабильным ядром

Способность к распаду напрямую зависит от состояния атома. Так называемое "стабильное" или нерадиоактивное ядро свойственно нераспадающимся атомам. В теории наблюдение за такими элементами можно вести до бесконечности, чтобы окончательно убедиться в их стабильности. Требуется это для того, чтобы отделить такие ядра от нестабильных, которые имеют крайне долгий период полураспада.

По ошибке такой "замедленный" атом можно принять за стабильный. Однако ярким примером может стать теллур, а конкретнее, его изотоп с номером 128, имеющий период полураспада в 2,2·1024 лет. Этот случай не единичный. Лантан-138 подвержен полураспаду, срок которого составляет 1011 лет. Этот срок в тридцать раз превышает возраст существующей вселенной.

Суть радиоактивного распада

бета распад формула

Данный процесс происходит произвольно. Каждый распадающийся радионуклид приобретает скорость, являющуюся константой для каждого случая. Скорость распада не может измениться под влиянием внешних факторов. Неважно, будет происходить реакция под воздействием огромной гравитационной силы, при абсолютном нуле, в электрическом и магнитном поле, во время какой-либо химической реакции и прочее. Повлиять на процесс можно только прямым воздействием на внутренность атомного ядра, что практически невозможно. Реакция спонтанная и зависит лишь от атома, в котором протекает, и его внутреннего состояния.

При упоминании радиоактивных распадов часто встречается термин "радионуклид". Тем, кто не знаком с ним, следует знать, что данное слово обозначает группу атомов, которые имеют радиоактивные свойства, собственное массовое число, атомный номер и энергетический статус.

Различные радионуклиды применяются в технических, научных и прочих сферах жизнедеятельности человека. К примеру, в медицине данные элементы используются при диагностировании заболеваний, обработке лекарств, инструментов и прочих предметов. Имеется даже ряд лечебных и прогностических радиопрепаратов.

Не менее важным является и определение изотопа. Этим словом называют особую разновидность атомов. Они имеют одинаковый атомный номер, как у обычного элемента, однако отличное массовое число. Вызвано это различие количеством нейтронов, которые не влияют на заряд, как протоны и электроны, но меняют массу. К примеру, у простого водорода их имеется целых 3. Это единственный элемент, изотопам которого были присвоены названия: дейтерий, тритий (единственный радиоактивный) и протий. В остальных случаях имена даются в соответствии с атомными массами и основным элементом.

Альфа-распад

Это вид радиоактивной реакции. Характерен для естественных элементов из шестого и седьмого периода таблицы химических элементов Менделеева. В особенности для искусственных или трансурановых элементов.

Элементы, подверженные альфа-распаду

В число металлов, для которых характерен данный распад, относят торий, уран и прочие элементы шестого и седьмого периода из периодической таблицы химических элементов, считая от висмута. Также процессу подвергаются изотопы из числа тяжелых элементов.

Что происходит во время реакции?

При альфа-распаде начинается испускание из ядра частиц, состоящих из 2 протонов и пары нейтронов. Сама выделяемая частица является ядром атома гелия, с массой 4 единицы и зарядом +2.

В итоге появляется новый элемент, который расположен на две клетки левее исходного в периодической таблице. Такое расположение определяется тем, что исходный атом потерял 2 протона и вместе с этим - начальный заряд. В итоге масса возникшего изотопа на 4 массовые единицы уменьшается по сравнению с первоначальным состоянием.

Примеры

Во время такого распада из урана образуется торий. Из тория появляется радий, из него - радон, который в итоге дает полоний, и в конце - свинец. При этом в процессе возникают изотопы этих элементов, а не они сами. Так, получается уран-238, торий-234, радий-230, радон-236 и далее, вплоть до возникновения стабильного элемента. Формула такой реакции выглядит следующим образом:

Th-234 -> Ra-230 -> Rn-226 -> Po-222 -> Pb-218

Скорость выделенной альфа-частицы в момент испускания составляет от 12 до 20 тыс. км/сек. Находясь в вакууме, такая частица обогнула бы земной шар за 2 секунды, двигаясь по экватору.

Бета-распад

Распад бета

Отличие этой частицы от электрона - в месте появления. Распад бета возникает в ядре атома, а не электронной оболочке, окружающей его. Чаще всего встречается из всех существующих радиоактивных превращений. Его можно наблюдать практически у всех существующих в настоящее время химических элементов. Из этого следует, что у каждого элемента имеется хотя бы один подверженный распаду изотоп. В большинстве случаев в результате бета-распада происходит бета-минус разложение.

Протекание реакции

При данном процессе происходит выбрасывание из ядра электрона, возникшего из-за самопроизвольного превращения нейтрона в электрон и протон. При этом протоны за счет большей массы остаются в ядре, а электрон, называемый бета-минус частицей, покидает атом. И поскольку протонов стало больше на единицу, ядро самого элемента меняется в большую сторону и располагается справа от исходного в периодической таблице.

Примеры

Распад бета с калием-40 превращает его в изотоп кальция, который расположен справа. Радиоактивный кальций-47 становится скандием-47, который может превратиться в стабильный титан-47. Как выглядит такой бета-распад? Формула:

Ca-47 -> Sc-47 -> Ti-47

Скорость вылета бета-частицы составляет 0,9 от скорости света, равной 270 тыс. км/сек.

В природе бета-активных нуклидов не слишком много. Значимых из них довольно мало. Примером может послужить калий-40, которого в естественной смеси содержится лишь 119/10000. Также естественными бета-минус-активными радионуклидами из числа значимых являются продукты альфа и бета-распад урана и тория.

Распад бета имеет типичный пример: торий-234, который при альфа-распаде превращается в протактиний-234, а затем таким же образом становится ураном, но другим его изотопом под номером 234. Этот уран-234 вновь из-за альфа-распада становится торием, но уже иной его разновидностью. Затем этот торий-230 становится радием-226, который превращается в радон. И в той же последовательности, вплоть до таллия, лишь с различными бета-переходами назад. Заканчивается этот радиоактивный бета-распад возникновением стабильного свинца-206. Это превращение имеет следующую формулу:

Th-234 -> Pa-234 -> U-234 -> Th-230 -> Ra-226 -> Rn-222 -> At-218 -> Po-214 -> Bi-210 -> Pb-206

Естественными и значимыми бета-активными радионуклидами являются К-40 и элементы от таллия до урана.

Распад бета-плюс

сколько альфа и бета распада

Также существует бета-плюс превращение. Оно также называется позитронный бета-распад. В нем происходит испускание из ядра частицы под названием позитрон. Результатом становится превращение исходного элемента в стоящий слева, который имеет меньший номер.

Пример

Когда происходит электронный бета-распад, магний-23 становится стабильным изотопом натрия. Радиоактивный европий-150 становится самарием-150.

Возникшая реакция бета-распада может создать бета+ и бета- испускания. Скорость вылета частиц в обоих случаях равна 0,9 от скорости света.

Другие радиоактивные распады

Не считая таких реакций, как альфа-распад и бета-распад, формула которых широко известна, существуют и другие, более редкие и характерные для искусственных радионуклидов процессы.

позитронный бета распад

Нейтронный распад. Происходит испускание нейтральной частицы 1 единицы массы. Во время него один изотоп превращается в другой с меньшим массовым числом. Примером может стать превращение лития-9 в литий-8, гелия-5 в гелий-4.

При облучении гамма-квантами стабильного изотопа йода-127 он становится изотопом с номером 126 и приобретает радиоактивность.

альфа и бета распад урана

Протонный распад. Встречается крайне редко. Во время него происходит испускание протона, имеющего заряд +1 и 1 единицу массы. Атомный вес становится меньше на одно значение.

Любое радиоактивное превращение, в частности, радиоактивные распады, сопровождаются выделением энергии в форме гамма-излучения. Его называют гамма-квантами. В некоторых случаях наблюдается рентгеновское излучение, имеющее меньшую энергию.

альфа и бета распады ядер

Гамма распад. Представляет собой поток гамма-квантов. Является электромагнитным излучением, более жестким, чем рентгеновское, которое применяется в медицине. В результате появляются гамма-кванты, или потоки энергии из атомного ядра. Рентгеновское излучение также является электромагнитным, но возникает из электронных оболочек атома.

Пробег альфа-частиц

 электронный бета распад

Альфа-частицы с массой от 4 атомных единиц и зарядом +2 движутся прямолинейно. Из-за этого можно говорить о пробеге альфа-частиц.

Значение пробега зависит от изначальной энергии и колеблется от 3 до 7 (иногда 13) см в воздухе. В плотной среде составляет сотую долю от миллиметра. Подобное излучение не может пробить лист бумаги и человеческую кожу.

Из-за собственной массы и зарядового числа альфа-частица имеет наибольшую ионизирующую способность и разрушает все на пути. В связи с этим альфа-радионуклиды наиболее опасны для людей и животных при воздействии на организм.

Проникающая способность бета-частиц

бета распад урана

В связи с малым массовым числом, которое в 1836 раз меньше протона, отрицательным зарядом и размером, бета-излучение оказывает слабое действие на вещество, через которое пролетает, но притом полет дольше. Также путь частицы не прямолинейный. В связи с этим говорят о проникающейся способности, которая зависит от полученной энергии.

Проникающие способности у бета-частиц, возникших во время радиоактивного распада, в воздухе достигают 2,3 м, в жидкостях подсчет ведется в сантиметрах, а в твердых телах - в долях от сантиметра. Ткани организма человека пропускают излучение на 1,2 см в глубину. Для защиты от бета-излучения может послужить простой слой воды до 10 см. Поток частиц с достаточно большой энергией распада в 10 Мэв почти весь поглощается такими слоями: воздух - 4 м; алюминий - 2,2 см; железо - 7,55 мм; свинец - 5,2 мм.

Учитывая малые размеры, частицы бета-излучения имеют малую ионизирующую способность по сравнении с альфа-частицами. Однако при попадании внутрь они намного опаснее, чем во время внешнего облучения.

Наибольшие проникающие показатели среди всех видов излучений в настоящее время имеет нейтронное и гамма. Пробег этих излучений в воздухе иногда достигает десятков и сотен метров, но с меньшими ионизирующими показателями.

Большинство изотопов гамма-квантов по энергии не превышают показателей в 1,3 МэВ. Изредка достигаются значения в 6,7 МэВ. В связи с этим для защиты от такого излучения используются слои из стали, бетона и свинца для кратности ослабления.

К примеру, чтобы десятикратно ослабить гамма-излучения кобальта, необходима свинцовая защита толщиной около 5 см, для 100-кратного ослабления потребуется 9,5 см. Бетонная защита составит 33 и 55 см, а водная - 70 и 115 см.

Ионизирующие показатели нейтронов зависят от их энергетических показателей.

При любой ситуации лучшим защитным методом от излучения станет максимальное отдаление от источника и как можно меньшее времяпрепровождение в зоне высокой радиации.

Деление ядер атомов

в результате бета распада

Под делением ядер атомов подразумевается самопроизвольное, или под влиянием нейтронов, разделение ядра на две части, примерно равные по размерам.

Эти две части становятся радиоактивными изотопами элементов из основной части таблицы химических элементов. Начинаются от меди до лантаноидов.

Во время выделения вырывается пара лишних нейтронов и возникает избыток энергии в форме гамма-квантов, который гораздо больше, чем при радиоактивном распаде. Так, при одном акте радиоактивного распада возникает один гамма-квант, а во время акта деления появляется 8,10 гамма-квантов. Также разлетевшиеся осколки имеют большую кинетическую энергию, переходящую в тепловые показатели.

Высвободившиеся нейтроны способны спровоцировать разделение пары аналогичных ядер, если они расположены вблизи и нейтроны в них попали.

В связи с этим возникает вероятность возникновения разветвляющей, ускоряющейся цепной реакции разделения атомных ядер и создания большого количества энергии.

Когда такая цепная реакция находится под контролем, то её можно использовать в определённых целях. К примеру, для отопления или электроэнергии. Такие процессы проводятся на атомных электростанциях и реакторах.

Если потерять контроль над реакцией, то случится атомный взрыв. Подобное применяется в ядерном оружии.

В естественных условиях имеется только один элемент - уран, имеющий лишь один делящийся изотоп с номером 235. Он является оружейным.

В обыкновенном урановом атомном реакторе из урана-238 под влиянием нейтронов образуют новый изотоп под номером 239, а из него - плутоний, который является искусственным и не встречается в естественных условиях. При этом возникший плутоний-239 применяется в оружейных целях. Этот процесс деления атомных ядер является сутью всего атомного оружия и энергетики.

Такие явления, как альфа-распад и бета-распад, формула которых изучается в школе, широко распространенны в наше время. Благодаря данным реакциям, существуют атомные электростанции и многие другие производства, основанные на ядерной физике. Однако не стоит забывать про радиоактивность многих таких элементов. При работе с ними требуется специальная защита и соблюдение всех мер предосторожности. В противном случае это может привести к непоправимой катастрофе.

Статья закончилась. Вопросы остались?
Комментарии 0
Подписаться
Я хочу получать
Правила публикации
Редактирование комментария возможно в течении пяти минут после его создания, либо до момента появления ответа на данный комментарий.