Периметр треугольника: понятие, характеристика, способы определения

Треугольник являет собой одну из фундаментальных геометрических фигур, представляющих собой три пересекающихся отрезка прямых. Эта фигура была известна еще ученым Древнего Египта, Древней Греции и Древнего Китая, которые и вывели большинство формул и закономерностей, используемых учеными, инженерами и конструкторами до сих пор.

К основным составным частям треугольника относятся:

• Вершины - точки пересечения отрезков.

• Стороны - пересекающиеся отрезки прямых.

Исходя из этих составных частей, формулируют такие понятия, как периметр треугольника, его площадь, вписанная и описанная окружность. Еще со школы известно, что периметр треугольника представляет собой числовое выражение суммы всех трех его сторон. В то же время формул для нахождения данной величины известно великое множество, в зависимости от тех исходных данных, которые есть у исследователя в том или ином случае.

1. Самый простой способ нахождения периметра треугольника используется в том случае, когда известны числовые значения всех трех его сторон (x,y,z), как следствие:

P= x+y+z

2. Периметр равностороннего треугольника можно найти, если вспомнить, что у данной фигуры все стороны, впрочем, как и все углы, равны. Зная длину этой стороны, периметр равностороннего треугольника можно определить по формуле:

P= 3x

3. У равнобедренного треугольника, в отличие от равностороннего, только две боковые стороны имеют одно и то же числовое значение, поэтому в этом случае в общем виде периметр будет находиться следующим образом:

P= 2x+y

4. Следующие способы необходимы в тех случаях, когда известны числовые значения не всех сторон. Например, если в исследовании есть данные о двух сторонах, а также известен угол между ними, то периметр треугольника может быть найден с помощью определения третьей стороны и известного угла. В этом случае эта третья сторона будет найдена по формуле:

z= 2x+2y-2xycosβ

Исходя из этого, периметр треугольника будет равен:

P= x+y+2x+(2y-2xycos β)

5. В том случае, когда изначально дана длина не более чем одной стороны треугольника и известны числовые величины двух углов прилегающих к ней, то периметр треугольника можно вычислить, опираясь на теорему синусов:

P = x+sinβ х/(sin(180°-β )) + sinγ x/(sin(180°-γ ))

6. Бывают случаи, когда для нахождения периметра треугольника используются известные параметры вписанной в него окружности. Данная формула также известна большинству еще со школьной скамьи:

P= 2S/r (S - площадь окружности, тогда как r - ее радиус).

Из всего вышеприведенного видно, что величина периметра треугольника может быть найдена множеством способов, исходя из тех данных, которыми владеет исследователь. Кроме того, есть еще несколько частных случаев нахождения данной величины. Так, периметр является одной из важнейших величин и характеристик прямоугольного треугольника.

Как известно, таким треугольником называют фигуру, две стороны которой образуют прямой угол. Периметр прямоугольного треугольника находится через числовое выражение суммы обоих катетов и гипотенузы. В том случае, если исследователю известны данные только о двух сторонах, оставшуюся можно вычислить с помощью знаменитой теоремы Пифагора: z= (x2 + y2), если известны оба катета, или x= (z2 – y2), если известна гипотенуза и катет.

В том случае, если известна длина гипотенузы и один из прилежащих у ней углов, то две другие стороны находятся по формулам: х= z sinβ , y= z cosβ. В этом случае периметр прямоугольного треугольника будет равен:

P= z(cosβ + sinβ +1)

Также частным случаем является вычисление периметра правильного (или равностороннего) треугольника, то есть такой фигуры, у которой все стороны и все углы равны. Вычисление периметра такого треугольника по известной стороне никакой проблемы не составляет, однако, зачастую исследователю известны какие-то другие данные. Так, если известен радиус вписанной окружности, периметр правильного треугольника находится по формуле:

P= 6√3r

А если дана величина радиуса описанной окружности, периметр правильного треугольника будет найден следующим образом:

P= 3√3R

Формулы нужно запомнить, чтобы успешно применть на практике.

Статья закончилась. Вопросы остались?
Комментарии 0
Подписаться
Я хочу получать
Правила публикации
Редактирование комментария возможно в течении пяти минут после его создания, либо до момента появления ответа на данный комментарий.