Правильный пятиугольник: необходимый минимум информации

Толковый словарь Ожегова гласит, что пятиугольник представляет собой геометрическую фигуру, ограниченную пятью пересекающимися прямыми, образующими пять внутренних углов, а также любой предмет подобной формы. Если у данного многоугольника все стороны и углы одинаковые, то он называется правильным (пентагоном).

Чем интересен правильный пятиугольник?

правильный пятиугольник
Именно в такой форме было построено всем известное здание Минобороны Соединенных Штатов. Из объемных правильных многогранников лишь додекаэдр имеет грани в форме пентагона. А в природе напрочь отсутствуют кристаллы, грани которых напоминали бы собой правильный пятиугольник. Кроме того, эта фигура является многоугольником с минимальным количеством углов, которым невозможно замостить площадь. Только у пятиугольника количество диагоналей совпадает с количеством его сторон. Согласитесь, это интересно!

Основные свойства и формулы

площадь правильного пятиугольника

Воспользовавшись формулами для произвольного правильного многоугольника, можно определить все необходимые параметры, которые имеет пентагон.

  • Центральный угол α = 360 / n = 360/5 =72°.
  • Внутренний угол β = 180° * (n-2)/n = 180° * 3/5 = 108°. Соответственно, сумма внутренних углов составляет 540°.
  • Отношение диагонали к боковой стороне равно (1+√5) /2, то есть "золотому сечению" (примерно 1,618).
  • Длина стороны, которую имеет правильный пятиугольник, может быть рассчитана по одной из трех формул, в зависимости от того, какой параметр уже известен:
  • если вокруг него описана окружность и известен ее радиус R, то а = 2*R*sin (α/2) = 2*R*sin(72°/2) ≈1,1756*R;
  • в случае, когда окружность c радиусом r вписана в правильный пятиугольник, а = 2*r*tg(α/2) = 2*r*tg(α/2) ≈ 1,453*r;
  • бывает так, что вместо радиусов известна величина диагонали D, тогда сторону определяют следующим образом: а ≈ D/1,618.
  • Площадь правильного пятиугольника определяется, опять-таки, в зависимости от того, какой параметр нам известен:
  • если имеется вписанная или описанная окружность, то используется одна из двух формул:

S = (n*a*r)/2 = 2,5*a*r либо S = (n*R2*sin α)/2 ≈ 2,3776*R2;

  • площадь можно также определить, зная лишь длину боковой стороны а:

S = (5*a2*tg54°)/4 ≈ 1,7205* a2.

Правильный пятиугольник: построение

правильный пятиугольник построение
Данную геометрическую фигуру можно построить по-разному. Например, вписать его в окружность с заданным радиусом либо построить на базе заданной боковой стороны. Последовательность действий была описана еще в «Началах» Евклида примерно 300 лет до н.э. В любом случае, нам понадобятся циркуль и линейка. Рассмотрим способ построения с помощью заданной окружности.

1. Выберите произвольный радиус и начертите окружность, обозначив ее центр точкой O.

2. На линии окружности выберите точку, которая будет служить одной из вершин нашего пятиугольника. Пусть это будет точка А. Соедините точки О и А прямым отрезком.

3. Проведите прямую через точку О перпендикулярно к прямой ОА. Место пересечения этой прямой с линией окружности обозначьте, как точку В.

4. На середине расстояния между точками О и В постройте точку С.

5. Теперь начертите окружность, центр которой будет в точке С и которая будет проходить через точку А. Место ее пересечения с прямой OB (оно окажется внутри самой первой окружности) будет точкой D.

6. Постройте окружность, проходящую через D, центр которой будет в А. Места ее пересечения с первоначальной окружностью нужно обозначить точками Е и F.

7. Теперь постройте окружность, центр которой будет в Е. Сделать это надо так, чтобы она проходила через А. Ее другое место пересечения оригинальной окружности нужно обозначить точкой G.

8. Наконец, постройте окружность через А с центром в точке F. Обозначьте другое место пересечения оригинальной окружности точкой H.

9. Теперь осталось только соединить вершины A, E, G, H, F. Наш правильный пятиугольник будет готов!

Статья закончилась. Вопросы остались?
Добавить смайл
  • :smile:
  • :wink:
  • :frowning:
  • :stuck_out_tongue_winking_eye:
  • :smirk:
  • :open_mouth:
  • :grinning:
  • :pensive:
  • :relaxed:
  • :heart:
Подписаться
Я хочу получать
Правила публикации
Следят за новыми комментариями — 6
0
Хорошо бы ещё показать картинку с всем этими углами сторонами и диагоналями, а то в памяти уже осталось мало знаний.
Копировать ссылку
0
класс,очень помогло!))
Копировать ссылку
Редактирование комментария возможно в течении пяти минут после его создания, либо до момента появления ответа на данный комментарий.