Корень уравнения - ознакомительная информация

В алгебре существует понятие двух видов равенств – тождества и уравнения. Тождества – это такие равенства, которые выполнимы при любых значениях букв, в них входящих. Уравнения – это тоже равенства, но выполнимы они лишь при некоторых значениях входящих в них букв.

Корень уравнения это
Буквы по условию задачи обычно бывают неравноправными. Это значит, что одни из них могут принимать любые допустимые значения, называемые коэффициентами (или параметрами), другие же - их называют неизвестными - принимают значения, которые необходимо найти в процессе решения. Как правило, неизвестные величины обозначают в уравнениях буквами, последними в латинском алфавите (x.y.z и т.д.), либо такими же буквами, но с индексом (х12, и т.д.), а известные коэффициенты – первыми буквами того же алфавита.

По количеству неизвестных выделяют уравнения с одним, двумя и несколькими неизвестными. Таким образом, все значения неизвестных, при которых решаемое уравнение превращается в тождество, называются решениями уравнений. Уравнение можно считать решенным в том случае, если найдены все его решения или доказано, что оно таковых не имеет. Задание «решить уравнение» на практике встречается часто и означает, что нужно отыскать корень уравнения.

Корень уравнения

Определение: корнями уравнения называются те значения неизвестных из области допустимых, при которых решаемое уравнение превращается в тождество.

Алгоритм решения абсолютно всех уравнений одинаков, и смысл его заключается в том, чтобы с помощью математических преобразований данное выражение привести к более простому виду.
Уравнения, которые имеют одинаковые корни, в алгебре называются равносильными.

Простейший пример: 7х-49=0, корень уравнения х=7;
х-7=0, аналогично, корень х=7, следовательно, уравнения равносильные. (В частных случаях равносильные уравнения могут совсем не иметь корней).

Если корень уравнения одновременно является корнем другого, более простого уравнения, полученного из исходного путем преобразований, то последнее называется следствием предыдущего уравнения.

Если их двух уравнений одно является следствием другого, то они считаются равносильными. Еще их называют эквивалентными. Приведенный выше пример это иллюстрирует.

Корни уравнения определение

Решение даже самых простых уравнений на практике нередко вызывает сложности. В результате решения можно получить один корень уравнения, два и более, даже бесконечное количество - зависит это от вида уравнений. Есть и такие, у которых нет корней, они называются неразрешимыми.

Примеры:
1) 15х -20=10; х=2. Это единственный корень уравнения.
2) 7х – y=0. Уравнение имеет бесконечное множество корней, так как у каждой переменной может быть бесчисленное количество значений.
3) х2= - 16. Число, возведенное во вторую степень, всегда дает положительный результат, поэтому невозможно отыскать корень уравнения. Это и есть одно из неразрешимых уравнений, о которых говорилось выше.

Правильность решения проверяется подстановкой найденных корней вместо букв и решением получившегося примера. Если тождество соблюдается, решение верное.

Статья закончилась. Вопросы остались?
Комментарии 0
Подписаться
Я хочу получать
Правила публикации
Редактирование комментария возможно в течении пяти минут после его создания, либо до момента появления ответа на данный комментарий.
Новости и общество
Новости и общество
Новости и общество