ГИС - это... Географические информационные системы

ГИС – это современные геоинформационные мобильные системы, которые обладают возможностью отображать свое местоположение на карте. В основе этого важного свойства лежит использование двух технологий: геоинформационной и глобального позиционирования. Если мобильное устройство имеет встроенный GPS-приемник, то с помощью такого прибора можно определить его местоположение и, следовательно, точные координаты самой ГИС. К сожалению, геоинформационные технологии и системы в русскоязычной научной литературе представлены небольшим количеством публикаций, вследствие этого практически полностью отсутствует информация об алгоритмах, лежащих в основе их функциональных возможностей.

гис это

Классификация ГИС

Подразделение геоинформационных систем происходит по территориальному принципу:

  1. Глобальная ГИС используется для предотвращения техногенных и природных катаклизмов с 1997 года. Благодаря этим данным можно за относительно короткое время спрогнозировать масштабы катастрофы, составить план ликвидации последствий, оценить нанесенный ущерб и людские потери, а также организовать гуманитарные акции.
  2. Региональная геоинформационная система разработана на муниципальном уровне. Она позволяет местным властям прогнозировать развитие определенного региона. Данная система отражает практически все важные сферы, например инвестиционные, имущественные, навигационно-информационные, правовые и др. Также стоит отметить, что благодаря использованию данных технологий появилась возможность выступать гарантом безопасности жизнедеятельности всего населения. Региональная геоинформационная система в настоящее время используется достаточно эффективно, способствуя привлечению инвестиций и стремительному росту экономики района.

геоинформационные системы

Каждая из вышеописанных групп имеет определенные подвиды:

  • В глобальную ГИС входят национальные и субконтинентальные системы, как правило, с государственным статусом.
  • В региональную – локальные, субрегиональные, местные.

Сведения о данных информационных системах можно найти в специальных разделах сети, которые называются геопорталами. Они размещаются в открытом доступе для ознакомления без каких-либо ограничений.

Принцип работы

Географические информационные системы работают по принципу составления и разработки алгоритма. Именно он позволяет отображать движение объекта на карте ГИС, включая перемещение мобильного устройства в пределах локальной системы. Чтобы изобразить данную точку на чертеже местности, необходимо знать, по крайней мере, две координаты - X и Y. При отображении движения объекта на карте потребуется определить последовательность координат (Xk и Yk). Их показатели должны соответствовать разным моментам времени локальной системы ГИС. Это является основой для определения местонахождения объекта.

региональная геоинформационная система

Данную последовательность координат можно извлечь из стандартного NMEA-файла GPS-приемника, выполнившего реальное движение на местности. Таким образом, в основе рассматриваемого здесь алгоритма лежит использование данных NMEA-файла с координатами траектории объекта по определенной территории. Необходимые данные можно получить также в результате моделирования процесса движения на основе компьютерных экспериментов.

Алгоритмы ГИС

Геоинформационные системы построены на исходных данных, которые берутся для разработки алгоритма. Как правило, это набор координат (Xk и Yk), соответствующий некоторой траектории объекта в виде NMEA-файла и цифровой карты ГИС на выбранном участке местности. Задача заключается в разработке алгоритма, отображающего движение точечного объекта. В ходе данной работы были проанализированы три алгоритма, лежащих в основе решения поставленной задачи.

  • Первый алгоритм ГИС – это анализ данных NMEA-файла с целью извлечения из него последовательности координат (Xk и Yk),
  • Второй алгоритм используется для вычисления путевого угла объекта, при этом отсчет параметра выполняется от направления на восток.
  • Третий алгоритм – для определения курса объекта относительно стран света.

географические информационные системы

Обобщенный алгоритм: общее понятие

Обобщенный алгоритм отображения движения точечного объекта на карте ГИС включает три указанных ранее алгоритма:

  • анализ данных NMEA;
  • вычисление путевого угла объекта;
  • определение курса объекта относительно стран всего земного шара.

Географические информационные системы с обобщенным алгоритмом оснащены основным управляющим элементом – таймером (Timer). Стандартная задача его заключается в том, что он позволяет программе генерировать события через определенные промежутки времени. С помощью такого объекта можно устанавливать требуемый период для выполнения набора процедур или функций. Например, для многократно выполняемого отсчета интервала времени в одну секунду надо установить следующие свойства таймера:

  • Timer.Interval = 1000;
  • Timer.Enabled = True.

использование геоинформационных систем

В результате каждую секунду будет запускаться процедура считывания координат X, Y объекта из NMEA-файла, вследствие чего данная точка с полученными координатами отображается на карте ГИС.

Принцип работы таймера

Использование геоинформационных систем происходит следующим образом:

  1. На цифровой карте отмечаются три точки (условное обозначение - 1, 2, 3), которые соответствуют траектории движения объекта в различные моменты времени tk2, tk1, tk. Они обязательно соединены сплошной линией.
  2. Включение и выключение таймера, управляющего отображением передвижения объекта на карте, осуществляется с помощью кнопок, нажимаемых пользователем. Их значение и определенную комбинацию можно изучить по схеме.

применение геоинформационных систем

NMEA-файл

Опишем кратко состав NMEA-файла ГИС. Это документ, записанный в формате ASCII. По сути, он представляет собой протокол для обмена информацией между GPS-приемником и другими устройствами, например ПК или КПК. Каждое сообщение NMEA начинается со знака $, за которым следует двухсимвольное обозначение устройства (для GPS-приемника — GP) и заканчивается последовательностью \r\n — символом перевода каретки и перехода на новую строку. Точность данных в уведомлении зависит от вида сообщения. Вся информация содержится в одной строке, причем поля разделяются запятыми.

геоинформационные технологии и системы

Для того чтобы разобраться, как работают геоинформационные системы, вполне достаточно изучить широко используемое сообщение типа $GPRMC, которое содержит минимальный, но основной набор данных: местоположение объекта, его скорость и время.
Рассмотрим на определенном примере, какая информация в нем закодирована:

  • дата определения координат объекта — 7 января 2015 г.;
  • всемирное время UTC определения координат — 10h 54m 52s;
  • координаты объекта — 55°22.4271' с.ш. и 36°44.1610' в.д.

Подчеркнем, что координаты объекта представлены в градусах и минутах, причем последний показатель дается с точностью до четырех знаков после запятой (или точки как разделителя целой и дробной частей вещественного числа в формате USA). В дальнейшем понадобится то, что в NMEA-файле широта местоположения объекта находится в позиции после третьей запятой, а долгота — после пятой. В конце сообщения передается контрольная сумма после символа '*' в виде двух шестнадцатеричных цифр — 6C.

Геоинформационные системы: примеры составления алгоритма

Рассмотрим алгоритм анализа NMEA-файла с целью извлечения набора координат (X и Yk), соответствующих траектории движения объекта. Он составляется из нескольких последовательных шагов.

геоинформационные системы примеры

Определение координаты Y объекта

Алгоритм анализа данных NMEA

Шаг 1. Прочитать строку GPRMC из NMEA-файла.

Шаг 2. Найти позицию третьей запятой в строке (q).

Шаг 3. Найти позицию четвертой запятой в строке (r).

Шаг 4. Найти, начиная с позиции q, символ десятичной точки (t).

Шаг 5. Извлечь один символ из строки, находящийся в позиции (r+1).

Шаг 6. Если этот символ равен W, то переменная NorthernHemisphere получает значение 1, иначе -1.

Шаг 7. Извлечь (г—+2) символов строки, начиная с позиции (t-2).

Шаг 8. Извлечь (t-q-3) символов строки, начиная с позиции (q+1).

Шаг 9. Преобразовать строки в вещественные числа и вычислить координату Y объекта в радианной мере.

Определение координаты X объекта

Шаг 10. Найти позицию пятой запятой в строке (n).

Шаг 11. Найти позицию шестой запятой в строке (m).

Шаг 12. Найти, начиная с позиции n, символ десятичной точки (p).

Шаг 13. Извлечь один символ из строки, находящийся в позиции (m+1).

Шаг 14. Если этот символ равен 'E', то переменная EasternHemisphere получает значение 1, иначе -1.

Шаг 15. Извлечь (m-p+2) символов строки, начиная с позиции (p-2).

Шаг 16. Извлечь (p-n+2) символов строки, начиная с позиции (n+1).

Шаг 17. Преобразовать строки в вещественные числа и вычислить координату X объекта в радианной мере.

Шаг 18. Если NMEA-файл не прочитан до конца, то перейти к шагу 1, иначе перейти к шагу 19.

Шаг 19. Закончить алгоритм.

На шаге 6 и 16 данного алгоритма используются переменные NorthernHemisphere и EasternHemisphere для численного кодирования местоположения объекта на Земле. В северном (южном) полушарии переменная NorthernHemisphere принимает значение 1 (-1) соответственно, аналогично в восточном (западном) полушарии EasternHemisphere – 1 (-1).

Применение ГИС

сфера применения геоинформационных систем и их взаимодействие
Применение геоинформационных систем широко распространено во многих областях:

  • геологии и картографии;
  • торговли и услугах;
  • кадастре;
  • экономике и управлении;
  • обороны;
  • инженерии;
  • образовании и др.

Статья закончилась. Вопросы остались?
Комментарии 0
Подписаться
Я хочу получать
Правила публикации
Редактирование комментария возможно в течении пяти минут после его создания, либо до момента появления ответа на данный комментарий.